• Title/Summary/Keyword: 18-Crown-6-tetracarboxylic acids

Search Result 7, Processing Time 0.032 seconds

Chiral discrimination studies of (+)-(18-crown-6)-2.3.11.12-tetracarboxylic acid by NMR spectroscopy

  • Lee, Won-Jae;Baek, Chae;Bang, Eun-Jung
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.399.1-399.1
    • /
    • 2002
  • The chiral stationary phase derived from (+) (18-crown-6)-2.3, 11.12-tetracarboxylic acid (18-C-6- TA) as a chiral selector has been employed for resolution of several $\alpha$-amino acids in HPLC. In a quest for the origin of chiral recognition of $\alpha$-amino acids in the presence of 18-C-6- T, A, as a chiral selector, these interactions responsible for the differential affinities shown toward enantioners were investigated by NNR spectroscopy. (omitted)

  • PDF

Investigation of Enantiomer Separation Using Chiral Crown Ethers as Chiral Selectors

  • Lee, Wonjae
    • Journal of Integrative Natural Science
    • /
    • v.9 no.1
    • /
    • pp.28-34
    • /
    • 2016
  • A number of chiral selectors have been developed and applied for enantiomer separation of a variety of chiral compounds. Among these chiral selectors are chiral crown ethers, a class of synthetic host polyether molecules that bind protonated chiral primary amines with high selectivity and affinity. In this paper, two important chiral crown ethers as chiral selectors of bis-(1,1'-binaphthyl)-22-crown-6 and (18-crown-6)-2,3,11,12-tetracarboxylic acid (18-C-6-TA) are focused. They have been widely used to resolve the enantiomers of chiral compounds containing a primary amino moiety using chiral stationary phases (CSPs) or chiral selectors by high-performance liquid chromatography (HPLC), capillary electrophoresis (CE) and so on in chirotechnology. Also, it was described that the commercially available covalent type HPLC CSPs derived from (+)- and (-)-18-C-6-TA have been developed and successfully applied for the resolution of various primary amino compounds including amino acids.

Chiral Separation of Aromatic Amino Acids by Capillary Electrophoresis using (+)-18-crown-6 tetracarboxylic acid and (-)-18-crown-6 tetracarboxylic acid as Chiral Selectors

  • Choi, Young-Me;La, Sook-Ie;Lee, Won-Jae;Kim, Kyoung-Rae
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.278.1-278.1
    • /
    • 2003
  • Recently, particular attention has been paid to the chiral separation of amino acid enantiomers because of their different biological activities. Hence, the high optical purity of aromatic amino acids is critical because of their important functions in the central nervous system. For the accurate chiral discrimination. we attempted to exploit the crosschecking each enantiomeric migraion orders of aromatic amino acids measured using (+)-18C6H4TA and (-)-18C6H4TA as the chiral selectors under pH 2.0, tris/citric acid buffer.

  • PDF

The Development and Application of Chirotechnology Using Chiral Crown Ethers for Enantiomer Separation (광학분리를 위한 키랄 크라운 에테르를 이용한 키랄공학의 개발과 응용)

  • Paik, Man-Jeong;Yun, Won-Nam;Lee, Won-Jae
    • KSBB Journal
    • /
    • v.27 no.4
    • /
    • pp.199-206
    • /
    • 2012
  • Chiral crown ethers are synthetic macrocyclic polyethers that bind protonated chiral primary amines with high selectivity and affinity. They have been widely used to separate or distinguish the enantiomers of chiral compounds containing a primary amino moiety by high-performance liquid chromatography, capillary electrophoresis, and NMR spectroscopy. In this paper, two important chiral crown ethers including chiral binaphthyl unit and (18-crown-6)-2,3,11,12-tetracarboxylic acid as chiral selectors are focused. And several chiral resolution techniques and their applications in chirotechnology using these chiral crown ethers with related chiral recognition mechanism studies are reviewed. Especially, it was shown that the commercially available HPLC columns based on (18-crown-6)-2,3,11,12-tetracarboxylic acid have been developed and successfully applied for the resolution of various primary amino compounds including amino acids.

Comparative Enantiomer Separation on Chiral Stationary Phases Derived from Chiral Crown Ether by HPLC (고성능 액체 크로마토그래피에서 키랄 크라운 에테르로부터 유도된 키랄 고정상을 이용한 광학분리의 비교)

  • Huang, Hu;Jeon, So-Hee;Kim, Ji-Yeon;Lee, Won-Jae
    • KSBB Journal
    • /
    • v.27 no.4
    • /
    • pp.232-236
    • /
    • 2012
  • Comparative liquid chromatographic enantiomer separation of ${\alpha}$-amino acids, their esters and primary amino compounds was performed using two chiral stationary phases (CSPs) prepared by covalently bonding (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (18-C-6-TA) of the same chiral selector. In general, the separation factors and resolution factors for these analytes on CSP 1 were greater than on CSP 2, while these capacity factors on CSP 2 were quite greater than on CSP 1. Except for leucine methyl ester and phenylalanine methyl ester, the elution orders of all analytes including ${\alpha}$-amino ${\alpha}$-alkyl acids and phenylglycine alkyl esters on CSP 1 are identical to those on CSP 2. This study showed that different connecting structures for these two CSPs might influence their ability to resolve the analytes depending on their structures related to the chiral recognition mechanism.