• Title/Summary/Keyword: 17DOF

Search Result 65, Processing Time 0.018 seconds

A Study on Development of a Smart Wellness Robot Platform (스마트 웰니스 로봇 플랫폼 개발에 관한 연구)

  • Lee, Byoungsu;Kim, Seungwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.331-339
    • /
    • 2016
  • This paper developed a home wellness robot platform to perform the roles in basic health care and life care in an aging society. A robotic platform and a sensory platform were implemented for an indoor wellness service. In the robotic platform, the precise mobility and the dexterous manipulation are not only developed in a symbiotic service-robot, but they also ensure the robot architecture of human friendliness. The mobile robot was made in the agile system, which consists of Omni-wheels. The manipulator was made in the anthropomorphic system to carry out dexterous handwork. In the sensing platform, RF tags and stereo camera were used for self and target localization. They were processed independently and cooperatively for accurate position and posture. The wellness robot platform was integrated in a real-time system. Finally, its good performance was confirmed through live indoor tests for health and life care.

Finite Element Vibration Analysis of Laminated Composite Folded Structures With a Channel Section using a High-order Shear deformation Plate Theory (고차전단변형 판이론을 이용한 채널단면을 갖는 복합적층 절판 구조물의 유한요소 진동 해석)

  • 유용민;장석윤;이상열
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 2004
  • This study deals with free vibrations of laminated composite structures with a channel section using finite element method. In this paper, the mixed finite element method using Lagrangian and Hermite interpolation functions is adopted and a high-order plate theory is used to analyze laminated composite non-prismatic folded plates with a channel section more accurately for free vibration. The theory accounts for parabolic distribution of the transverse shear stress and requires no shear correction factors supposed in the first-order plate theory. An 32×32 matrix is assembled to transform the system element matrices from the local to global coordinates using a coordinate transformation matrix, in which an eighth drilling degree of freedom (DOF) per node is appended to the existing 7-DOF system. The results in this study are compared with those of available literatures for the conventional and first-order plate theory. Sample studies are carried out for various layup configurations and length-thickness ratio, and geometric shapes of plates. The significance of the high-order plate theory in analyzing complex composite structures with a channel section is enunciated in this paper.

The effect of cristobalite on quantitative analysis of quartz in respirable dust by FTIR direct-on-filter method (직접필터법을 이용하여 호흡성 분진내 석영을 정량분석할 때 크리스토바라이트가 미치는 영향)

  • Phee, Young Gyu;Roh, Young-Man;Kim, Hyun Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • To establish the Fourier-transform infra-red spectrophotometry (FTIR) direct-on-filter(DOF) technique as a useful analytical method for quartz in respirable dust samples, influence of the interference should be corrected. This study was designed to compare three methods of correction for cristobalite when quantifying the content of quartz, including the least square, the optimum choice and the spectral subtraction methods. Respirable dust, created in a dust chamber containing the standard material of quartz, cristobalite was collected using a cyclone equipped with a 25 mm, $0.8{\mu}m$ pore size DM filter as a collection medium. The quartz weights overestimated about 100% when mixed of cristobalite by measure using 799 cm-1 absorption peak of quartz. The quartz weights appeared over estimated by optimum choice, spectral subtraction and least square method in mixtures of 33% cristobalite were 90.3%, 60.1% and about 4.3%, respectively. The least square method have been adopted to correction methods of cristobalite and satisfactory results have been obtained. The results of this study suggest that, when correcting for effect of cristobalite on quantitative analysis of quartz in respirable dust by FTIR direct-on-filter method, the least square method produce the most unbiased results compared with those of other correction methods.

Numerical Modelling Techniques of VPMM for Manta Type UUV (만타형 UUV의 VPMM 전산해석기법 개발)

  • Sang-Eui Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.151-151
    • /
    • 2023
  • An accurate prediction of the hydrodynamic maneuvering darivatives is essential to desing a robust control system of a UUV(unmanned underwater vehicle). Typically, these derivatives were estimated by either the towing tank experiment or semi-empirical methods. With the enhancement of high performance computing capacity, a numerical analysis using computational fluid dynamics has reach the level of experiment. Therefore, the aims of the present research are to numerically develop a computational model for the vertical planar motion mechanism of a UUV and to estimate the hydrodynamics loads in 6-DOF. The target structure of the present study was manta type UUV (12meter length). The numerical model was developed in 1/ 6 model scale. Numerical results were compared with the results of the towing tank experiment for validation. In the present study, a commercial RANS-based viscous solver STARCCM+ (ver 17.06) was used.

  • PDF

Operational Characteristics of a Cam-type Vegetable Transplanter and Mechanism of a Transplanting Device (캠방식 채소 정식기의 작동 특성 및 식부장치 작동 메커니즘 분석)

  • Park, Jeong-Hyeon;Hwang, Seok-Joon;Nam, Ju-Seok
    • Journal of agriculture & life science
    • /
    • v.53 no.4
    • /
    • pp.113-124
    • /
    • 2019
  • In this study, the operational characteristics of a cam-type vegetable transplanter which usually used in domestic was analyzed and operating mechanism of a transplanting device was analyzed. The main components and power path of the transplanter were analyzed. The maximum and minimum control cycles according to the moving speed and the plant spacing were analyzed. 3D modeling and simulation were performed to derive the trajectory of the bottom end of the transplanting hopper and the plant spacing at the each operating condition. The simulation results were verified by the field tests. As main findings of this study, the transplanting device has one degree of freedom (DOF) which consist of 13 links, 17 rotating joints and 1 half joint, and each part has composite structure with cam and links. By continuous and repetitive motion of the structures of transplanting device, the transplanting hopper plants the seedling in the ground with a vertical direction, and the seedling was planted stably. The power is transmitted to the driving part and transplanting device from the engine, and the maximum and minimum plant spacing of the transplanting device were about 900 mm and 350 mm, respectively.