• 제목/요약/키워드: 16s rRNA sequence

검색결과 761건 처리시간 0.026초

Acinetobacter pullorum sp. nov., Isolated from Chicken Meat

  • Elnar, Arxel G.;Kim, Min-Gon;Lee, Ju-Eun;Han, Rae-Hee;Yoon, Sung-Hee;Lee, Gi-Yong;Yang, Soo-Jin;Kim, Geun-Bae
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권4호
    • /
    • pp.526-532
    • /
    • 2020
  • A bacterial strain, designated B301T and isolated from raw chicken meat obtained from a local market in Korea, was characterized and identified using a polyphasic taxonomic approach. Cells were gram-negative, non-motile, obligate-aerobic coccobacilli that were catalase-positive and oxidase-negative. The optimum growth conditions were 30℃, pH 7.0, and 0% NaCl in tryptic soy broth. Colonies were round, convex, smooth, and cream-colored on tryptic soy agar. Strain B301T has a genome size of 3,102,684 bp, with 2,840 protein-coding genes and 102 RNA genes. The 16S rRNA gene analysis revealed that strain B301T belongs to the genus Acinetobacter and shares highest sequence similarity (97.12%) with A. celticus ANC 4603T and A. sichuanensis WCHAc060041T. The average nucleotide identity and digital DNA-DNA hybridization values for closely related species were below the cutoff values for species delineation (95-96% and 70%, respectively). The DNA G+C content of strain B301T was 37.0%. The major respiratory quinone was Q-9, and the cellular fatty acids were primarily summed feature 3 (C16:1 ω6c/C16:1 ω7c), C16:0, and C18:1 ω9c. The major polar lipids were phosphatidylethanolamine, diphosphatidyl-glycerol, phosphatidylglycerol, and phosphatidyl-serine. The antimicrobial resistance profile of strain B301T revealed the absence of antibiotic-resistance genes. Susceptibility to a wide range of antimicrobials, including imipenem, minocycline, ampicillin, and tetracycline, was also observed. The results of the phenotypic, chemotaxonomic, and phylogenetic analyses indicate that strain B301T represents a novel species of the genus Acinetobacter, for which the name Acinetobacter pullorum sp. nov. is proposed. The type strain is B301T (=KACC 21653T = JCM 33942T).

β-Galactosidase Gene of Thermus thermophilus KNOUC112 Isolated from Hot Springs of a Volcanic Area in New Zealand: Identification of the Bacteria, Cloning and Expression of the Gene in Escherichia coli

  • Nam, E.S.;Choi, J.W.;Lim, J.H.;Hwang, S.K.;Jung, H.J.;Kang, S.K.;Cho, K.K.;Choi, Y.J.;Ahn, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권11호
    • /
    • pp.1591-1598
    • /
    • 2004
  • To isolate the $\beta$-galactosidase producing thermophilic bacteria, samples of mud and water were collected from hot springs of avolcanic area near Golden Springs in New Zealand. Among eleven isolated strains, the strain of KNOUC112 produced the highest amounts of $\beta$-galactosidase at 40 h incubation time (0.013 unit). This strain was aerobic, asporogenic bacilli, immobile, gram negative, catalase positive, oxidase positive, and pigment producing. Optimum growth was at 70-72$^{\circ}C$, pH 7.0-7.2, and it could grow in the presence of 3% NaCl. The main fatty acids of cell components were iso-15:0 (30.26%), and iso-17:0 (31.31%). Based on morphological and biochemical properties and fatty acid composition, the strain could be identified as genus Thermus, and finally as Thermus thermophilus by phylogenetic analysis based on 16S rRNA sequence. So the strain is designated as Thermus thermophilus KNOUC112. A gene from Thermus thermophilus KNOUC112 encoding $\beta$-galactosidase was amplified by PCR using redundancy primers prepared based on the structure of $\beta$-galactosidase gene of Thermus sp. A4 and Thermus sp. strain T2, cloned and expressed in E. coli JM109 DE3. The gene of Thermus thermophilus KNOUC112 $\beta$-galactosidase(KNOUC112$\beta$-gal) consisted of a 1,938 bp open reading frame, encoding a protein of 73 kDa that was composed of 645 amino acids. KNOUC112$\beta$-gal was expressed as dimer and trimer in E. coli JM109 (DE3) via pET-5b.

Production and antifungal effect of 3-phenyllactic acid (PLA) by lactic acid bacteria

  • Yoo, Jeoung Ah;Lim, Young Muk;Yoon, Min Ho
    • Journal of Applied Biological Chemistry
    • /
    • 제59권3호
    • /
    • pp.173-178
    • /
    • 2016
  • Phenyllactic acid (PLA), which is a known antimicrobial compound, can be synthesized through the reduction of phenylpyruvic acid (PPA) by lactate dehydrogenase of lactic acid bacteria (LAB). PLA-producing LAB was isolated from coffee beans, and the isolated LAB was identified as Lactobacillus zeae Y44 by 16S rRNA gene sequence analysis. Cell-free supernatant (CFS) from L. zeae Y44 was assessed for both its capability to produce the antimicrobial compound PLA and its antifungal activity against three fungal pathogens (Rhizoctonia solani, Botrytis cinerea, and Colletotrichum aculatum). PLA concentration was found to be 4.21 mM in CFS when L. zeae Y44 was grown in MRS broth containing 5 mM PPA for 12 h. PLA production could be promoted by the supplementation with PPA and phenylalanine (Phe) in the MRS broth, but not affected by 4-hydroxy-phenylpyruvic acid, and inhibited by tyrosine as precursors. Antifungal activity assessment demonstrated that all fungal pathogens were sensitive to 5 % CFS (v/v) of L. zeae Y44 with average growth inhibitions ranging from 27.8 to 50.0 % (p<0.005), in which R. solani was the most sensitive with an inhibition of 50.0 %, followed by B. cinerea and C. aculatum. However, pH modification of CFS to pH 6.5 caused an extreme reduction in their antifungal activity. These results may indicate that the antifungal activity of CFS was caused by acidic compounds like PLA or organic acids rather than proteins or peptides molecules.

Isolation of a Promoter Element that is Functional in Bacillus subtilis for Heterologous Gene Expression

  • Maeng, Chang-Jae;Kim, Hyung-Kwoun;Park, Sun-Yang;Koo, Bon-Tag;Oh, Tae-Kwang;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권1호
    • /
    • pp.85-91
    • /
    • 2001
  • To construct an efficient Bacillus subtilis expression vector, strong promoters were isolated from the chromosomal DNA libraries of Clostridium acetobutylicum ATCC 4259, Thermoactinomyces sp. E79, and Bacillus thermoglucosidasius KCTC 3400. The $P_{C27}$ promoter cloned from the clostridial chromosmal DNA showed a 5-fold higher promoter strength than the $P_{SP02}$ promoter in the expression of the cat gene, and its sequence was estimated as an upstream region of the predicted hypothetical gene (tet-R family bacterial transcription regulator gene) in C. acetobutylicum. As a promoter element, $P_{C27}$ exhibited putative nucleotide sequences that can bind with bacterial RNAP and the 3'end of the 16S rRNA just upstream of the start codon. In addition, the promoter activity of $P_{C27}$ was distinctively repressed in the presence of glucose. Using $P_{C27}$ as the promoter element, a glucose controllable B. subtilis expression vector was constructed and the lipase gene from Staphylococcus haemolyticus KCTC 8957P was expressed in B. subtilis. When compared with the lipase expression by the T7 promoter induced by IPTG in E. coli, the $P_{C27}$ promoter showed about a 1.5-fold higher expression level in B. subtilis than that without induction.

  • PDF

Report of eight unrecorded Acetobacter species in Korea, discovered during the survey in 2018-2019

  • Heo, Jun;Won, Miyoung;Lee, Daseul;Han, Byeong-Hak;Hong, Seung-Beom;Kwon, Soon-Wo
    • Journal of Species Research
    • /
    • 제11권3호
    • /
    • pp.155-161
    • /
    • 2022
  • Acetic acid bacteria (AAB) convert ethanol to acetic acid through oxidation, and the fermentation pathway of AAB is important in the vinegar industry. The genus Acetobacter is the representative one of AAB, and several Korean traditional vinegars are produced using Acetobacter strains. Until now, four species in the genus Acetobacter were reported as native species in Korea. During the past two years, we isolated several AAB strains from fruits, flowers and fermented foods, and several AAB species unrecorded in Korea were found on the basis of 16S rRNA gene sequence analyses. In this study, we report eight Acetobacter species as native ones which are A. fabarum C10-3 (=KACC 21483) isolated from plumcot fruit (Naju-si), A. lovaniensis KDG-EC1 (=KACC 22697) isolated from diced radish kimchi (Naju-si), A. okinawensis GAM12-M2 (=KACC 22696) isolated from persimmon fruit (Sangju-si), A. orientalis FR32C4 (=KACC 22370) isolated from fruit of Cudrania tricuspidata (Jeonju-si), A. papaya FR35B3 (=KACC 22046) isolated from grape fruit (Yeongdong-gun), A. suratthaniensis GAM15-R2 (=KACC 22694) isolated from persimmon fruit(Gimje-si), A. syzygii C25-1 (=KACC 22048) isolated from peach fruit (Namwon-si) and A. thailandicus JDF1-M1 (=KACC 22693) isolated from plum fruit(Seoul).

이산화탄소로부터 생물전기화학적 아세트산 생산을 위한 미생물 농화배양 및 군집 분석 (Microbial Enrichment and Community Analysis for Bioelectrochemical Acetate Production from Carbon Dioxide)

  • 김준형;김영은;박명화;송영은;설은희;김중래;오유관
    • 신재생에너지
    • /
    • 제16권1호
    • /
    • pp.58-67
    • /
    • 2020
  • Microbial electrosynthesis has recently been considered a potentially sustainable biotechnology for converting carbon dioxide (CO2) into valuable biochemicals. In this study, bioelectrochemical acetate production from CO2 was studied in an H-type two-chambered reactor system with an anaerobic microbial consortium. Metal-rich mud flat was used as the inoculum and incubated electrochemically for 90 days under a cathode potential of -1.1 V (vs. Ag/AgCl). Four consecutive batch cultivations resulted in a high acetate concentration and productivity of 93 mmol/L and 7.35 mmol/L/day, respectively. The maximal coulombic efficiency (rate of recovered acetate from supplied electrons) was estimated to be 64%. Cyclic voltammetry showed a characteristic reduction peak at -0.2~-0.4 V, implying reductive acetate generation on the cathode electrode. Furthermore, several electroactive acetate-producing microorganisms were identified based on denaturing- gradient-gel-electrophoresis (DGGE) and 16S rRNA sequence analyses. These results suggest that the mud flat can be used effectively as a microbial source for bioelectrochemical CO2 conversion.

Bacterial Fruit Rot of Apricot Caused by Burkholderia cepacia in China

  • Fang, Yuan;Li, Bin;Wang, Fang;Liu, Baoping;Wu, Zhiyi;Su, Ting;Qiu, Wen;Xie, Guanlin
    • The Plant Pathology Journal
    • /
    • 제25권4호
    • /
    • pp.429-432
    • /
    • 2009
  • An unreported disease of apricot was observed in orchards in Zhejiang province, China. Symptoms started as water soaked lesions on the fruit surface. Later, water-soaked areas developed and spread to the entire fruit, resulting in soft rot of the whole fruit. The causal organism isolated from symptomatic fruits was identified as Burkholderia cepacia based on its biochemical and physiological characteristics and confirmed by the cellular fatty acid composition and Biolog data as well as 16S rRNA gene sequence analysis. The bacterial isolates caused similar symptoms when inoculated onto fruits of apricot. In addition, European plum, Japanese plum, nectarine and kiwifruit were susceptible to the B. cepacia pathogen. However, the B. cepacia pathogen failed to cause any visible symptoms when it was inoculated onto 16 other fruits. This is the first report of a bacterial disease of apricot caused by B. cepacia in China.

Sphingopyxis panaciterrae sp. nov., Isolated from Soil of Ginseng Field

  • Lee, Hae-Won;Ten, Irina L.;Jung, Hae-Min;Liu, Qing-Mei;Im, Wan-Taek;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1011-1015
    • /
    • 2008
  • A Gram-negative, strictly aerobic, motile bacterial strain, designated Gsoil $124^T$, was isolated from a soil sample taken from a ginseng field in Pocheon Province (South Korea). The isolate contained Q-10 as the predominant lipoquinone, plus $C_{18:1}\;{\omega}7c$ and summed feature 4 ($C_{16:1}\;{\omega}6c$ and/or iso-$C_{15:0}$ 2-OH) as the major fatty acids. The G+C content of the genomic DNA was 68.1 mol%, and the major polar lipids consisted of sphingoglycolipid, phosphatidylglycerol, phosphatidylcholine, and phosphatidylethanolamine. A comparative 16S rRNA gene sequence analysis showed that strain Gsoil $124^T$ was most closely related to Sphingopyxis chilensis (98.7%), Sphingopyxis alaskensis (98.2%), Sphingopyxis witflariensis (98.2%), Sphingopyxis taejonensis (98.0%), and Sphingopyxis macrogoltabida (97.6%). However, the DNA-DNA relatedness between strain Gsoil $124^T$ and its phylogenetically closest neighbors was less than 22%. Thus, on the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil $124^T$ should be classified as representing a novel species in the genus Sphingopyxis, for which the name Sphingopyxis panaciterrae sp. nov. is proposed. The type strain is Gsoil $124^T$ (=KCTC $12580^T$=LMG $24003^T$).

Caulobacter ginsengisoli sp. nov., a Novel Stalked Bacterium Isolated from Ginseng Cultivating Soil

  • Liu, Qing-Mei;Ten, Leonid N.;Im, Wan-Taek;Lee, Sung-Taik;Yoon, Min-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권1호
    • /
    • pp.15-20
    • /
    • 2010
  • A Gram negative, aerobic, nonspore-forming, straight or curved rod-shaped bacterium, designated Gsoil $317^T$, was isolated from soil of a ginseng field in Pocheon Province (South Korea) and was characterized using a polyphasic approach. Cells were dimorphic, with stalk (or prostheca) and nonmotile or nonstalked and motile, by means of a single polar flagellum. Comparative analysis of 16S rRNA gene sequences revealed that strain Gsoil $317^T$ was most closely related to Caulobacter mirabilis LMG $24261^T$ (97.2%), Caulobacter fusiformis ATCC $15257^T$ (97.1 %), Caulobacter segnis LMG $17158^T$ (97.0%), Caulobacter vibrioides DSM $9893^T$ (96.8%), and Caulobacter henricii ATCC $15253^T$ (96.7%). The sequence similarities to any other recognized species within Alphaproteobacteria were less than 96.0%. The detection of Q-10 as the major respiratory quinone and a fatty acid profile with summed feature 7 ($C_{18:1}\;{\omega}7c$ and/or $C_{18:1}\;{\omega}9t$ and/or $C_{18:1}\;{\omega}12t;$ 56.6%) and $C_{16:0}$ (15.9%) as the major fatty acids supported the affiliation of strain Gsoil $317^T$ to the genus Caulobacter. The G+C content of the genomic DNA was 65.5 mol%. DNA-DNA hybridization experiments showed that the DNA-DNA relatedness values between strain Gsoil $317^T$ and its closest phylogenetic neighbors were below 11%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil $317^T$ should be classified as representing a novel species in the genus Caulobacter, for which the name Caulobacter ginsengisoli sp. novo is proposed. The type strain is Gsoil $317^T$ (=KCTC $12788^T=DSM\;18695^T$).

Production of lactic acid by Lactobacillus paracasei isolated from button mushroom bed

  • Kim, Sun-Joong;Seo, Hye-Kyung;Kong, Won-Sik;Yoon, Min-Ho
    • 한국버섯학회지
    • /
    • 제11권4호
    • /
    • pp.187-193
    • /
    • 2013
  • A galactose fermentation bacterium producing lactose from red seaweed, which was known well to compromise the galactose as main reducing sugar, was isolated from button mushroom bed in Buyeo-Gun, Chungchugnamdo province. The lactic acid bacteria MONGB-2 was identified as Lactobacillus paracasei subsp. tolerans by analysis of 16S rRNA gene sequence. When the production of lactic acid and acetic acid by L. paracasei MONGB-2 was investigated by HPLC analysis with various carbohydrates, the strain MONGB-2 efficiently convert the glucose and galactose to lactic acid with the yield of 18.86 g/L and 18.23 g/L, respectively and the ratio of lactic acid to total organic acids was 1.0 and 0.91 g/g for both substrates. However, in the case of acetic acid fermentation, other carbohydrates besides galactose and red seaweed hydrolysate could not be totally utilized as carbon sources for acetic acid production by the strain. The lactic acid production from glucose and galactose in the fermentation time courses was gradually enhanced upto 60 h fermentation and the maximal concentration reached to be 16-18 g/L from both substrates after 48 h of fermentation. The initial concentration of glucose and galactose were completely consumed within 36 h of fermentation, of which the growth of cell also was maximum level. In addition, the bioconversion of lactic acid from the red seaweed hydrolysate by L. paracasei MONGB-2 appeared to be about 20% levels of the initial substrates concentration and this results were entirely lower than those of galactose and glucose showed about 60% of conversion. The apparent results showed that L. paracasei MONGB-2 could produce the lactic acid with glucose as well as galactose by the homofermentation through EMP pathway.