• Title/Summary/Keyword: 16S-rRNA

Search Result 1,916, Processing Time 0.033 seconds

Characterization of L-(+)-Lactic Acid Producing Weizmannia coagulans Strains from Tree Barks and Probiogenomic Evaluation of BKMTCR2-2

  • Jenjuiree Mahittikon;Sitanan Thitiprasert;Sitanan Thitiprasert;Naoto Tanaka;Yuh Shiwa;Nitcha Chamroensaksri;Somboon Tanasupawat
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.403-415
    • /
    • 2023
  • This study aimed to isolate and identify L-(+)-lactic acid-producing bacteria from tree barks collected in Thailand and evaluate the potential strain as probiotics. Twelve strains were isolated and characterized phenotypically and genotypically. The strains exhibited a rod-shaped morphology, high-temperature tolerance, and the ability to ferment different sugars into lactic acid. Based on 16S rRNA gene analysis, all strains were identified as belonging to Weizmannia coagulans. Among the isolated strains, BKMTCR2-2 demonstrated exceptional lactic acid production, with 96.41% optical purity, 2.33 g/l of lactic acid production, 1.44 g/g of lactic acid yield (per gram of glucose consumption), and 0.0049 g/l/h of lactic acid productivity. This strain also displayed a wide range of pH tolerance, suggesting suitability for the human gastrointestinal tract and potential probiotic applications. The whole-genome sequence of BKMTCR2-2 was assembled using a hybridization approach that combined long and short reads. The genomic analysis confirmed its identification as W. coagulans and safety assessments revealed its non-pathogenic attribute compared to type strains and commercial probiotic strains. Furthermore, this strain exhibited resilience to acidic and bile conditions, along with the presence of potential probiotic-related genes and metabolic capabilities. These findings suggest that BKMTCR2-2 holds promise as a safe and effective probiotic strain with significant lactic acid production capabilities.

Effects of supplemental bacteriophage on the gut microbiota and nutrient digestibility of ileal-cannulated pigs

  • Hyunwoong Jo;Geongoo Han;Eun Bae Kim;Changsu Kong;Beob Gyun Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.340-352
    • /
    • 2024
  • This study measured the potential changes of the microbiota in the gastrointestinal tract and energy and nutrient digestibility by supplemental bacteriophages in pigs. Twelve castrated male pigs (initial mean body weight = 29.5 ± 2.3 kg) were surgically cannulated using T-cannula. The animals were housed individually in pens equipped with a feeder and a nipple waterer. The pigs were allotted to 1 of 3 experimental diets in a quadruplicated 3 × 2 Latin square design with 3 experimental diets, 2 periods, and 12 pigs resulting in 8 replicates per diet. The 3 diets were a control mainly based on corn and soybean meal with no antibiotics or bacteriophages, a diet containing 0.1% antibiotics, and a diet containing 0.2% bacteriophages. On day 5 of the experimental period, feces were collected and on days 6 and 7, ileal digesta were collected. Genomic DNA for bacteria were extracted from the ileal digesta and feces and the V4 region of the 16S rRNA gene was amplified. The ileal and fecal digestibility of energy, dry matter, organic matter, crude protein, and fiber was unaffected by dietary antibiotics or bacteriophages. At the phylum level, the supplemental antibiotic or bacteriophage tended to result in a higher proportion of Firmicutes (p = 0.059) and a lower proportion of Bacteroidetes (p = 0.099) in the ileal digesta samples compared with the control group with no difference between the antibiotic and bacteriophage groups. At the genus level, the supplemental antibiotic or bacteriophage tended to result in a higher proportion of Lactobacillus (p = 0.062) and a lower proportion of Bacteroides (p = 0.074) and Streptococcus (p = 0.088) in the ileal digesta compared with the control group with no difference between the antibiotic and bacteriophage groups. In the feces, supplemental antibiotics or bacteriophages reduced the proportion of Bifidobacterium compared with the control group (p = 0.029) with no difference between the antibiotic and bacteriophage groups. Overall, supplemental antibiotics and bacteriophages showed positive effect on the microbiota of in the ileal digesta without largely affecting energy or nutrient digestibility, with no differences between the antibiotic and bacteriophage groups in growing pigs.

Potentiality of Beneficial Microbe Bacillus siamensis GP-P8 for the Suppression of Anthracnose Pathogens and Pepper Plant Growth Promotion

  • Ji Min Woo;Hyun Seung Kim;In Kyu Lee;Eun Jeong Byeon;Won Jun Chang;Youn Su Lee
    • The Plant Pathology Journal
    • /
    • v.40 no.4
    • /
    • pp.346-357
    • /
    • 2024
  • This study was carried out to screen the antifungal activity against Colletotrichum acutatum, Colletotrichum dematium, and Colletotrichum coccodes. Bacterial isolate GP-P8 from pepper soil was found to be effective against the tested pathogens with an average inhibition rate of 70.7% in in vitro dual culture assays. 16S rRNA gene sequencing analysis result showed that the effective bacterial isolate as Bacillus siamensis. Biochemical characterization of GP-P8 was also performed. According to the results, protease and cellulose, siderophore production, phosphate solubilization, starch hydrolysis, and indole-3-acetic acid production were shown by the GP-P8. Using specific primers, genes involved in the production of antibiotics, such as iturin, fengycin, difficidin, bacilysin, bacillibactin, surfactin, macrolactin, and bacillaene were also detected in B. siamensis GP-P8. Identification and analysis of volatile organic compounds through solid phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) revealed that acetoin and 2,3-butanediol were produced by isolate GP-P8. In vivo tests showed that GP-P8 significantly reduced the anthracnose disease caused by C. acutatum, and enhanced the growth of pepper plant. Reverse transcription polymerase chain reaction analysis of pepper fruits revealed that GP-P8 treated pepper plants showed increased expression of immune genes such as CaPR1, CaPR4, CaNPR1, CaMAPK4, CaJA2, and CaERF53. These results strongly suggest that GP-P8 could be a promising biocontrol agent against pepper anthracnose disease and possibly a pepper plant growth-promoting agent.

Dual Application of p-Nitrophenol Alkanoate-Based Assay for Soil Selection and Screening of Microbial Strains for Bioplastic Degradation

  • Nara Shin;Jinok Oh;Suwon Kim;Yeda Lee;Yuni Shin;Suhye Choi;Shashi Kant Bhatia;Yung-Hun Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.7
    • /
    • pp.1530-1543
    • /
    • 2024
  • With an increase in the commercialization of bioplastics, the importance of screening for plastic-degrading strains and microbes has emerged. Conventional methods for screening such strains are time-consuming and labor-intensive. Therefore, we suggest a method for quickly and effectively screening plastic-degrading microbial strains through dual esterase assays for soil and isolated strains, using p-nitrophenyl alkanoates as substrates. To select microbe-abundant soil, the total amount of phospholipid fatty acids (PLFAs) included in each soil sample was analyzed, and esterase assays were performed for each soil sample to compare the esterase activity of each soil. In addition, by analyzing the correlation coefficients and sensitivity between the amount of PLFAs and the degree of esterase activity according to the substrate, it was confirmed that substrate pNP-C2 is the most useful index for soil containing several microbes having esterase activity. In addition, esterase assays of the isolated strains allowed us to select the most active strain as the degrading strain, and 16S rRNA results confirmed that it was Bacillus sp. N04 showed the highest degradation activity for polybutylene succinate (PBS) as measured in liquid culture for 7 days, with a degradation yield of 99%. Furthermore, Bacillus sp. N04 showed degradation activity against various bioplastics. We propose the dual application of p-nitrophenyl alkanoates as an efficient method to first select the appropriate soil and then to screen for plastic-degrading strains in it, and conclude that pNP-C2 in particular, is a useful indicator.

Isolation of a Novel Tenacibaculum sp. JS-1 and Characterization of Its β-Agarase

  • Jin Sun Kim;Young Min Woo;Dong-Geun Lee;Andre Kim;Sang-Hyeon Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.2
    • /
    • pp.135-140
    • /
    • 2024
  • This study reports the isolation of a bacterium capable of degrading agar and the characterization of its agarase. An agar-degrading marine bacterium JS-1 was isolated using Marine agar 2216 media from seawater collected from the seashore of Angolpo, Changwon, Gyeongnam Province, Republic of Korea. An agar-degrading bacterium was named as Tenacibaculum sp. JS-1 by phylogenetic analysis based on 16S rRNA gene sequence. The extracellular crude agarase was prepared from the culture media of Tenacibaculum sp. JS-1 and used for characterization. Relative activities at 20, 30, 40, 50, and 60℃ were 39, 73, 100, 74, and 53%, respectively. Relative activities at pH 5, 6, 7, and 8 were 46%, 67%, 100%, and 49%, respectively. Its extracellular agarase showed maximum activity (164 U/l) at pH 7.0 and 40℃ in a 20 mM GTA buffer. The residual activities after heat treatment at 20, 30, and 50℃ for 30 min were 84, 73, and 26% or more, respectively. After 2 h heat treatment at 20, 30, 40, and 50℃, the residual activities were 80, 64, 52 and 21%, respectively. Thin layer chromatography analysis suggested that Tenacibaculum sp. JS-1 produces extracellular β-agarases that hydrolyze agarose to produce neoagarooligosaccharides, including neoagarohexaose (12.3%), neoagarotetraose (65.1%), and neoagarobiose (22.6%) at 6 h. Tenacibaculum sp. JS-1 and its β-agarase could be valuable for producing neoagarooligosaccharides with a variety of functional properties. These properties include inhibiting bacterial growth, slowing down starch degradation, and whitening, which are of interest for pharmaceuticals, food, cosmeceuticals, and nutraceuticals.

Isolation, Identification and Use of Bacterial Strain Ochrobactrum intermedium PDB-3 for Degradation of the Pesticide Chlorpyrifos

  • Diyorbek Kosimov;Lyudmila Zaynitdinova;Aziza Mavjudova;Muzaffar Muminov;Oybek Shukurov
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.1
    • /
    • pp.44-54
    • /
    • 2024
  • One of the serious modern environmental problems is pollution caused by highly toxic pesticides. Only small amounts of applied pesticides reach their target, and the rest ends up in soil and water. Chlorpyrifos is a toxic, broad-spectrum organophosphate insecticide. In humans, chlorpyrifos inhibits acetylcholinesterase (AChE) in the peripheral and central nervous system, and particularly in children, small amounts of this pesticide cause neurotoxic damage. As the toxic effects of chlorpyrifos and its persistence in the environment require its removal from contaminated sites, it is essential to study the biological diversity of chlorpyrifos-degrading microorganisms. In this study, we sought to determine the chlorpyrifos-degrading ability of the bacterial strain Ochrobactrum intermedium PDB-3. This strain was isolated from soil contaminated with various pesticides and identified as PDB-3 based on morpho-cultural characteristics, MALDI-TOF MS, and 16S rRNA. Studies were conducted for 30 days in sterile soils containing initial concentrations of 50, 75, 100, and 125 mg/kg of chlorpyrifos. To determine the degradation of chlorpyrifos, a liquid culture of the strain was added to the soil at three optical densities: 0, and after 24 and 48 h (OD = 0.03, 0.2 and 0.32). Using GX-MS, we determined that chlorpyrifos was converted to 3,5,6-trichloro-2-pyridinol (TCP). We also found that with increasing optical density, rapid degradation of the initial concentration of chlorpyrifos occurred. Sterile soil without strain PDB-3 was used as a control sample.

The Growth and EPA Synthesis of Shewanella oneidensis MR-1 and Expectation of EPA Biosynthetic Pathway

  • Jeong, Young-Su;Song, Sang-Kyu;Lee, Su-Jin;Hur, Byung-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.127-133
    • /
    • 2006
  • Shewanella oneidensis MR-1 has the ability to inhale certain metals and chemical compounds and exhale these materials in an altered state; as a result, this microorganism has been widely applied in bioremediation protocols. However, the relevant characteristics of cell growth and biosynthesis of PuFAs have yet to be thoroughly investigated. Therefore, in this study, we have attempted to characterize the growth and fatty acid profiles of S. oneidensis MR-1 under a variety of temperature conditions. The fastest growth of S. oneidensis MR-1 was observed at $30^{\circ}C$, with a specific growth rate and doubling time of $0.6885h^{-1}\;and\;1.007 h$. The maximum cell mass of this microorganism was elicited at a temperature of $4^{\circ}C$. The eicosapentaenoic acid (EPA) synthesis of S. oneidensis MR-1 was evaluated under these different culture temperatures. S. oneidensis MR-1 was found not to synthesize EPA at temperatures in excess of $30^{\circ}C$, but was shown to synthesize EPA at temperatures below $30^{\circ}C$. The EPA content was found to increase with decreases in temperature. We then evaluated the EPA biosynthetic pathway, using a phylogenetic tree predicted on 16s rRNA sequences, and the homology of ORFs between S. oneidensis MR-1 and Shewanella putrefaciens SCRC-2738, which is known to harbor a polyketide synthase (PKS)-like module. The phylogenetic tree revealed that MR-1 was very closely related to both Moritella sp., which is known to synthesize DHA via a PKS-like pathway, and S. putrefaciens, which has been reported to synthesize EPA via an identical pathway. The homology between the PKS-like module of S. putrefaciens SCRC-2738 and the entire genome of S. oneidensis MR-1 was also analyzed, in order to mine the genes associated with the PKS-like pathway in S. oneidensis MR-1. A putative PKS-like module for EPA biosynthesis was verified by this analysis, and was also corroborated by the experimental finding that S. oneidensis MR-1 was able to synthesize EPA without the expression of $dihomo-{\gamma}-linoleic$ acid (DGLA) and arachidonic acid (AA) formed during EPA synthesis via the FAS pathway.

Isolation of Agarivorans sp. KC-1 and Characterization of Its Thermotolerant β-Agarase (한천분해세균 Agarivorans sp. KC-1의 분리 및 내열성 β-아가라제의 특성 규명)

  • Min, Kyung-Cheol;Lee, Chang-Eun;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1056-1061
    • /
    • 2018
  • This article reports an agar-degrading marine bacterium and characterizes its agarase. The agar-degrading marine bacterium, KC-1, was isolated from seawater on the shores of Sacheon, in Gyeongnam province, Korea, using Marine Broth 2216 agar medium. To identify the agar-degrading bacterium as Agarivorans sp. KC-1, phylogenetic analysis based on the 16S rRNA gene sequence was used. An extracellular agarase was prepared from a culture medium of Agarivorans sp. KC-1, and used for the characterization of enzyme. The relative activities at 20, 30, 40, 50, 60, and $70^{\circ}C$ were 65, 91, 96, 100, 77, and 35%, respectively. The relative activities at pH 5, 6, 7, and 8 were 93, 100, 87, and 82%, respectively. The extracellular agarase showed maximum activity (254 units/l) at pH 6.0 and $50^{\circ}C$ in 20 mM of Tris-HCl buffer. The agarase activity was maintained at 90% or more until 2 hr exposure at $20^{\circ}C$, $30^{\circ}C$ and $40^{\circ}C$, but it was found that the activity decreased sharply from $60^{\circ}C$. A zymogram analysis showed that Agarivorans sp. KC-1 produced 3 agar-degrading enzymes that had molecular weights of 130, 80, and 69 kDa. A thin layer chromatography analysis suggested that Agarivorans sp. KC-1 produced extracellular ${\beta}$-agarases as it hydrolyzed agarose to produce neoagarooligosaccharides, including neoagarohexaose (21.6%), neoagarotetraose (32.2%), and neoagarobiose (46.2%). These results suggest that Agarivorans sp. KC-1 and its thermotolerant ${\beta}$-agarase would be useful for the production of neoagarooligosaccharides that inhibit bacterial growth and delay starch degradation.

An Analysis of the Antibiotic Resistance Genes of Multi-Drug Resistant (MDR) Acinetobacter baumannii (다제내성 Acinetobacter baumannii 의 항생제 내성 유전자 분석)

  • Lim, Jina;Lee, Gyusang;Choi, Yeonim;Kim, Jongbae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.3
    • /
    • pp.217-224
    • /
    • 2016
  • Acinetobacter baumannii (A. baumannii) is prevalent in hospital environments and is an important opportunistic pathogen of nosocomial infection. It is known that this pathogen cause herd infection in hospitals, and the mortality rate is remarkably higher for patients infected with this pathogen and already have other underlying diseases. Herein, we investigated the antibiotic resistance rate and the type of resistance genes in 85 isolates of multi-drug resistant A. baumannii from the samples commissioned to laboratory medicine in two university hospitals-in hospital A and hospital B-located in Cheonan and Chungcheong provinces, respectively, in Korea. As a result, $bla_{OXA-23-like}$ and $bla_{OXA-51-like}$ were detected in 82 stains (96.5%). These 82 strains of $bla_{OXA-23-like}$ producing A. baumannii were confirmed with the ISAba1 gene found at the top of the $bla_{OXA-23-like}$ genes by PCR, inducing the resistance against carbapenemase. The armA, AME gene that induces the resistance against aminoglycoside was detected in 34 strains out of 38 strains from Hospital A (89.5%), and in 40 strains out of 47 strains from Hospital B (85.1%), while AMEs were found in 33 strains out of 38 strains from Hospital A (70.2%) and in 44 strains out of 47 strains in Hospital B (93.6%). Therefore, it was found that most multi-drug resistant A. baumannii from the Cheonan area expressed both acethyltransferase and adenyltransferase. This study investigated the multi-drug resistant A. baumannii isolated from Cheonan and Chungcheong provinces in Korea, and it is thought that the results of the study can be utilized as the basic information to cure multi-drug resistant A. baumannii infections and to prevent the spread of drug resistance.

Mitigation Effect of Drought Stress by Plant Growth-promoting Bacterium Bacillus sp. SB19 on Kale Seedlings in Greenhouse (식물생장촉진 Bacillus sp. SB19 균주의 케일 처리에 대한 가뭄 스트레스 완화 효과)

  • Kim, Dayeon;Lee, Sang-Yeob;Kim, Jung-Jun;Han, Ji-Hee
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.833-847
    • /
    • 2016
  • Drought stress is a major agricultural limitation to crop productivity worldwide, especially by which leafy vegetables, plant leaves eaten as vegetable, could be more lethal. The study was carried out to know the effect of drought tolerance plant growth promoting bacteria (PGPB) on water stress of kale seedlings. A total of 146 morphologically distinct bacterial colonies were isolated from bulk soil and rhizosphere soil of leafy vegetables and screened for plant growth promoting microbioassay in greenhouse. Out of them the isolate SB19 significantly promoted the growth of kale seedlings in increasement of about 42% of plant height (14.1 cm), 148% of leaf area ($19.0cm^2$) and 138% of shoot fresh weight (1662.5 mg) attained by the bacterially treated plants compared to distilled water treated control (9.9 cm, $7.7cm^2$, 698.8 mg). Shoot water content of SB19 treated kale seedlings (1393.8 mg) was also increased about 152% compared with control (552.5 mg). The SB19 isolated from bulk soil of kale plant in Iksan, Korea, was identified as species of Bacillus based on 16S rRNA gene sequencing analysis. We evaluated the effect of drought tolerance by the Bacillus sp. SB19 on kale seedlings at 7th and 14th days following the onset of the water stress and watering was only at 7th day in the middle of test. In the survey of 7th and 14th day, there were mitigation effect of drought stress in kale seedlings treated with $10^6$ and $10^7cell\;mL^{-1}$ of SB19 compared to distilled water treated control. Especially, there were more effective mitigation of drought damage in kale seedlings treated with $10^7cell\;mL^{-1}$ than $10^6cell\;mL^{-1}$. Further, although drought injury of bacterially treated kale seedlings were not improved at 14th day compared with 7th day, drought injury of $10^7cell\;mL^{-1}$ of SB19 treated kale seedlings were not happen rapidly but developed over a longer period of time than $10^6cell\;mL^{-1}$ of SB19 or control. The diffidence of results might be caused by the concentration of bacterial suspension. This study suggests that beneficial plant-microbe interaction could be a important role of enhancement of water availability and also provide a good method for improving quality of leafy vegetables under water stress conditions.