• Title/Summary/Keyword: 16S rDNA sequences

Search Result 406, Processing Time 0.025 seconds

Sufflavibacter maritimus gen. nov., sp. nov., Novel Flavobacteriaceae Bacteria Isolated from Marine Environments

  • Kwon, Kae-Kyoung;Yang, Seung-Jo;Lee, Hee-Soon;Cho, Jang-Cheon;Kim, Sang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1379-1384
    • /
    • 2007
  • Four Gram-negative, chemoheterotrophic, non-motile, yellow-colored strains were isolated from the East Sea or from deep-sea sediments of Nankai Trough by standard dilution plating. Characterization by polyphasic approaches indicated that the four strains are members of the same species. Phylogenetic analyses based on 16S rRNA gene sequences revealed that the strains formed a coherent and novel genus-level lineage within the family Flavobacteriaceae. The dominant cellular fatty acids were i-C15:0, 3-OH i-C17:0, and 2-OH i-C15:0 and/or C16:1 ${\omega}7c$. Predominance of 2-OH i-C15:0 and/or C16:1 ${\omega}7c$ clearly differentiated the strains from closely related members. The DNA G+C contents ranged 35.1-36.2 mol%. It is proposed, from the polyphasic evidence, that the strains should be placed into a novel genus and species named Sufflavibacter maritimus gen. nov., sp. nov., with strain $IMCC1001^T(=KCCM\;42359^T=NBRC\;102039^T)$ as the type strain.

Flavobacterium amnigenum sp. nov. Isolated from a River

  • Patil, Kishor Sureshbhai;Padakandla, Shalem Raj;Chae, Jong-Chan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1536-1541
    • /
    • 2018
  • A yellowish, flexirubin-pigment-producing strain $I3-3^T$ was isolated from river water in Iksan, the Republic of Korea. The strain was gram-negative, aerobic, non-motile, showed catalase and oxidase activities, and could grow at a temperature range of $10-35^{\circ}C$, pH 5.0-10 and 0-2.0% (w/v) of NaCl. The major fatty acids were iso-$C_{15:0}$, iso-$C_{17:0}$ 3-OH and summed feature 3 (comprising $C_{16:1}{\omega}7c$ and/or $C_{16:1}{\omega}6c$). The isolate contained phosphatidylethanolamine, one aminolipid, and two unidentified lipids as the major polar lipids. Menaquinone-6 (MK6) was the major respiratory quinone. The G+C content of the genomic DNA of strain $I3-3^T$ was 35.6%. Comparison of the 16S rRNA gene sequence with the sequences of the closely related type strains showed highest sequence similarity of 96.95% and 96.93% to Flavobacterium nitrogenifigens $NXU-44^T$ and Flavobacterium compostarboris $15C3^T$, respectively. Based on phenotypic and phylogenetic distinctiveness, strain $I3-3^T$ is considered as a member of novel species within the genus Flavobacterium, for which Flavobacterium amnigenum sp. nov. is proposed. The type strain is $I3-3^T$ (=KCTC $52884^T$ =NBRC $112871^T$).

Identification of Potential Bacillus subtilis Probiotics from Korean Soybean Paste and Their Antimicrobial and Immune Activities

  • Seo, Weon-Taek;Nam, Sang-Hae;Lee, Chang-Kwon;Cho, Kye-Man
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • The potential probiotic of a total of 15 Bacillus species isolated from Korean soybean paste (doenjang) was evaluated. Among those tested, the CSY191 and CSY388 strains were selected as probiotic bacteria due to their acid and bile tolerance, respectively. These strains were classified as Bacillus subtilis based on morphological, physiological, and chemotaxonomic features as well as on phylogenetic analysis based on their 16S rDNA sequences. These strains CSY191 and CSY388 showed a significant survival with rate range of 30.0 to 58.3% and of 31.0% to 58.1%, respectively, under artificial gastric acidic conditions at pH 3.0. These CSY191 and CSY388 strains appeared to have high antimicrobial activity against Salmonella Typhimurium, Bacillus cereus and Listeria monocytogenes. Also, methanol extractions (surfactin-like compounds) of strain CSY191 and strain CSY388 activated RAW264.7 microphages and induced the production of nitric oxide (NO) in a concentration-dependent manner, respectively. Therefore, strain CSY191 and strain CSY388 can be used as potential probiotics.

Phylogenetic diversity and UV resistance analysis of radiation-resistant bacteria isolated from the water in Han River (한강물로부터 분리된 방사선 내성 세균들의 계통학적 다양성 및 UV 내성 분석)

  • Lee, Jae-Jin;Joo, Eun Sun;Lee, Do Hee;Jung, Hee-Young;Kim, Myung Kyum
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.65-73
    • /
    • 2016
  • The aim of this study was to investigate the UV-resistance of radiation-resistant bacteria isolated from the water of Han River, South Korea. The water sample was irradiated with 3 kGy gamma radiation prior to isolation. Radiation-resistant bacterial strains were isolated by standard serial dilution method on R2A and 1/10 diluted R2A agar. The resulting purely isolated 60 cultures of bacteria were analysed for UV resistance and used in further studies. Based on the comparative analyses of 16S rRNA gene sequences, the bacterial isolates were divided into 3 phyla (4 genera): the phylum Deinococcus-Thermus (the genus Deinococcus) was 61.7%, Bacteroidetes (Hymenobacter and Spirosoma) was 23.4%, and Firmicutes (Exiguobacterium) was 15%. The results suggested that twenty-nine isolates are candidates new species belonging to Deinococcus, Hymenobacter, and Spirosoma, or other new genera. Nine bacterial strains were selected among the novel candidates and the UV-resistance analysis was conducted. All the candidate bacterial strains showed high UV resistance, similar to that of D. radiodurans R1.

Ramlibacter ginsenosidimutans sp. nov., with Ginsenoside-Converting Activity

  • Wang, Liang;An, Dong-Shan;Kim, Song-Gun;Jin, Feng-Xie;Kim, Sun-Chang;Lee, Sung-Taik;Im, Wan-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.311-315
    • /
    • 2012
  • A novel ${\beta}$-proteobacterium, designated BXN5-$27^T$, was isolated from soil of a ginseng field of Baekdu Mountain in China, and was characterized using a polyphasic approach. The strain was Gram-staining-negative, aerobic, motile, non-spore-forming, and rod shaped. Strain BXN5-$27^T$ exhibited ${\beta}$-glucosidase activity that was responsible for its ability to transform ginsenoside $Rb_1$ (one of the dominant active components of ginseng) to compound Rd. Phylogenetic analysis based on 16S rRNA gene sequences showed that this strain belonged to the family Comamonadaceae; it was most closely related to Ramlibacter henchirensis $TMB834^T$ and Ramlibacter tataouinensis$TTB310^T$ (96.4% and 96.3% similarity, respectively). The G+C content of the genomic DNA was 68.1%. The major menaquinone was Q-8. The major fatty acids were $C_{16:0}$, summed feature 4 (comprising $C_{16:1}$ ${\omega}7c$ and/or iso-$C_{15:0}$ 2OH), and $C_{17:0}$ cyclo. Genomic and chemotaxonomic data supported the affiliation of strain BXN5-$27^T$ to the genus Ramlibacter. However, physiological and biochemical tests differentiated it phenotypically from the other established species of Ramlibacter. Therefore, the isolate represents a novel species, for which the name Ramlibacter ginsenosidimutans sp. nov. is proposed, with the type strain being BXN5-$27^T$ (=DSM $23480^T$ = LMG $24525^T$ = KCTC $22276^T$).

Sulfate Reduction for Bioremediation of AMD Facilitated by an Indigenous Acid- and Metal-Tolerant Sulfate-Reducer

  • Nguyen, Hai Thi;Nguyen, Huong Lan;Nguyen, Minh Hong;Nguyen, Thao Kim Nu;Dinh, Hang Thuy
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1005-1012
    • /
    • 2020
  • Acid mine drainage (AMD) has been a serious environmental issue that threatens soil and aquatic ecosystems. In this study, an acid-tolerant sulfate-reducing bacterium, strain S4, was isolated from the mud of an AMD storage pond in Vietnam via enrichment in anoxic mineral medium at pH 5. Comparative analyses of sequences of the 16S rRNA gene and dsrB gene involved in sulfate reduction revealed that the isolate belonged to the genus Desulfovibrio, and is most closely related to Desulfovibrio oxamicus (with 99% homology in 16S rDNA sequence and 98% homology in dsrB gene sequence). Denaturing gradient gel electrophoresis (DGGE) analyses of dsrB gene showed that strain S4 represented one of the two most abundant groups developed in the enrichment culture. Notably, strain S4 was capable of reducing sulfate in low pH environments (from 2 and above), and resistance to extremely high concentration of heavy metals (Fe 3,000 mg/l, Zn 100 mg/l, Cu 100 mg/l). In a batch incubation experiment in synthetic AMD with pH 3.5, strain S4 showed strong effects in facilitating growth of a neutrophilic, metal sensitive Desulfovibrio sp. strain SR4H, which was not capable of growing alone in such an environment. Thus, it is postulated that under extreme conditions such as an AMD environment, acid- and metal-tolerant sulfate-reducing bacteria (SRB)-like strain S4 would facilitate the growth of other widely distributed SRB by starting to reduce sulfate at low pH, thus increasing pH and lowering the metal concentration in the environment. Owing to such unique physiological characteristics, strain S4 shows great potential for application in sustainable remediation of AMD.

Biocontrol of Cabbage Clubroot by the Organic Fertilizer Using Streptomyces sp. AC-3. (Streptomyces sp. AC-3을 이용한 배추 무사마귀병의 생물학적 방제)

  • 주길재;김영목;김정웅;김원찬;이인구;최용화;김진호
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.172-178
    • /
    • 2004
  • This research is performed for a biological control of Chinese cabbage clubroot, we isolated an antagonistic bacterium AC-3 against Plasmodiophora sp., causal pathogens of cabbage clubroot. The isolated strain was identified as Streptomyces sp. by culture morphology, biochemical reactions, and homology research based on l6S rDNA sequences. Streptomyces sp. AC-3 produced chitinase (9.3 units/$m\ell$) in culture broth. So Plasmodiophora sp. mycelia changed abnonnal swelling, curling and branching mycelia by Streptomyces sp. AC-3 culture. In a field infected by Plasmodiophora sp., the treatment of a organic fertilizer added 2% Streptomyces sp. AC-3 microbial inoculant, it resulted in about 50% reducing the severity of cabbage clubroot significantly on cabbage plants compared with treated organic fertilizer plants. Additional disease such as sclerotinia rot, fusarium wilt and pythium rot were also significantly reduced by the treatment of the organic fertilizer added Streptomyces sp. AC-3 microbial inoculant.

Genomic Analysis of Dairy Starter Culture Streptococcus thermophilus MTCC 5461

  • Prajapati, Jashbhai B.;Nathani, Neelam M.;Patel, Amrutlal K.;Senan, Suja;Joshi, Chaitanya G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.459-466
    • /
    • 2013
  • The lactic acid bacterium Streptococcus thermophilus is widely used as a starter culture for the production of dairy products. Whole-genome sequencing is expected to utilize the genetic basis behind the metabolic functioning of lactic acid bacterium (LAB), for development of their use in biotechnological and probiotic applications. We sequenced the whole genome of Streptococcus thermophilus MTCC 5461, the strain isolated from a curd source, by 454 GS-FLX titanium and Ion Torrent PGM. We performed comparative genome analysis using the local BLAST and RDP for 16S rDNA comparison and by the RAST server for functional comparison against the published genome sequence of Streptococcus thermophilus CNRZ 1066. The whole genome size of S. thermophilus MTCC 5461 is of 1.73Mb size with a GC content of 39.3%. Streptococcal virulence-related genes are either inactivated or absent in the strain. The genome possesses coding sequences for features important for a probiotic organism such as adhesion, acid tolerance, bacteriocin production, and lactose utilization, which was found to be conserved among the strains MTCC 5461 and CNRZ 1066. Biochemical analysis revealed the utilization of 17 sugars by the bacterium, where the presence of genes encoding enzymes involved in metabolism for 16 of these 17 sugars were confirmed in the genome. This study supports the facts that the strain MTCC 5461 is nonpathogenic and harbors essential features that can be exploited for its probiotic potential.

Fine-Scale Population Structure of Accumulibacter phosphatis in Enhanced Biological Phosphorus Removal Sludge

  • Wang, Qian;Shao, Yongqi;Huong, Vu Thi Thu;Park, Woo-Jun;Park, Jong-Moon;Jeon, Che-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1290-1297
    • /
    • 2008
  • To investigate the diversities of Accumulibacter phosphatis and its polyhydroxyalkanoate (PHA) synthase gene (phaC) in enhanced biological phosphorus removal (EBPR) sludge, an acetate-fed sequencing batch reactor was operated. Analysis of microbial communities using fluorescence in situ hybridization and 16S rRNA gene clone libraries showed that the population of Accumulibacter phosphatis in the EBPR sludge comprised more than 50% of total bacteria, and was clearly divided into two subgroups with about 97.5% sequence identity of the 16S rRNA genes. PAO phaC primers targeting the phaC genes of Accumulibacter phosphatis were designed and applied to retrieve fragments of putative phaC homologs of Accumulibacter phosphatis from EBPR sludge. PAO phaC primers targeting $G_{1PAO},\;G_{2PAO},\;and\;G_{3PAO}$ groups produced PCR amplicons successfully; the resulting sequences of the phaC gene homologs were diverse, and were distantly related to metagenomic phaC sequences of Accumulibacter phosphatis with 75-98% DNA sequence identities. Degenerate NPAO (non-PAO) phaC primers targeting phaC genes of non-Accumulibacter phosphatis bacteria were also designed and applied to the EBPR sludge. Twenty-four phaC homologs retrieved from NPAO phaC primers were different from the phaC gene homologs derived from Accumulibacter phosphatis, which suggests that the PAO phaC primers were specific for the amplification of phaC gene homologs of Accumulibacter phosphatis, and the putative phaC gene homologs by PAO phaC primers were derived from Accumulibacter phosphatis in the EBPR sludge. Among 24 phaC homologs, a phaC homolog (GINPAO-2), which was dominant in the NPAO phaC clone library, showed the strongest signal in slot hybridization and shared approximately 60% nucleotide identity with the $G_{4PAO}$ group of Accumulibacter phosphatis, which suggests that GINPAO-2 might be derived from Accumulibacter phosphatis. In conclusion, analyses of the 16S rRNA and phaC genes showed that Accumulibacter phosphatis might be phylogenetically and metabolically diverse.

Partial denture metal framework may harbor potentially pathogenic bacteria

  • Mengatto, Cristiane Machado;Marchini, Leonardo;de Souza Bernardes, Luciano Angelo;Gomes, Sabrina Carvalho;Silva, Alecsandro Moura;Rizzatti-Barbosa, Celia Marisa
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.468-474
    • /
    • 2015
  • PURPOSE. The aim of this study was to characterize and compare bacterial diversity on the removable partial denture (RPD) framework over time. MATERIALS AND METHODS. This descriptive pilot study included five women who were rehabilitated with free-end mandibular RPD. The biofilm on T-bar clasps were collected 1 week ($t_1$) and 4 months ($t_2$) after the RPD was inserted ($t_0$). Bacterial 16S rDNA was extracted and PCR amplified. Amplicons were cloned; clones were submitted to cycle sequencing, and sequences were compared with GenBank (98% similarity). RESULTS. A total of 180 sequences with more than 499 bp were obtained. Two phylogenetic trees with 84 ($t_1$) and 96 ($t_2$) clones represented the bacteria biofilm at the RPD. About 93% of the obtained phylotypes fell into 25 known species for $t_1$ and 17 for $t_2$, which were grouped in 5 phyla: Firmicutes ($t_1=82%$; $t_2=60%$), Actinobacteria ($t_1=5%$; $t_2=10%$), Bacteroidetes ($t_1=2%$; $t_2=6%$), Proteobacteria ($t_1=10%$; $t_2=15%$) and Fusobacteria ($t_1=1%$; $t_2=8%$). The libraries also include 3 novel phylotypes for $t_1$ and 11 for $t_2$. Library $t_2$ differs from $t_1$ (P=.004); $t_1$ is a subset of the $t_2$ (P=.052). Periodontal pathogens, such as F. nucleatum, were more prevalent in $t_2$. CONCLUSION. The biofilm composition of the RPD metal clasps changed along time after RPD wearing. The RPD framework may act as a reservoir for potentially pathogenic bacteria and the RPD wearers may benefit from regular follow-up visits and strategies on prosthesis-related oral health instructions.