• Title/Summary/Keyword: 16S rDNA pyrosequencing

Search Result 18, Processing Time 0.02 seconds

Seasonal Variations in the Bacterial Community of Gwangyang Bay Seawater (광양만 해수의 세균 군집의 계절적 변화)

  • Park, Seong Chan;Lee, Ji Hee;Kang, Joo Won;Baik, Keun Sik;Seong, Chi Nam
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.522-531
    • /
    • 2014
  • Seasonal variations in the bacterial community of Gwangyang Bay seawater were analyzed using both isolation and cultivation-independent methods. Amplified rDNA restriction analysis was applied to 200 bacterial isolates. Bacterial isolates were composed of four phyla: Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. Pyrosequencing was conducted, in addition to denaturing gradient gel electrophoresis (DGGE) of genomic DNA extracted directly from the water samples. The bacterial sequences obtained by pyrosequencing of 16S rRNA genes consisted of 24 phyla in the spring and summer, 39 in the fall, and 32 in the winter. The diversity index was high in the fall, whereas the dominancy index was high in the spring. In the spring, phylum Firmicutes was dominant, whereas phylum Proteobacteria dominated in the other three seasons. The second most dominant phyla were Proteobacteria in the spring, Firmicutes in the summer, and Bacteroidetes both in the fall and winter. Bacilliaceae was the most predominant family in the spring. Rhodobacteraceae and Bacilliaceae dominated in the summer, and Rhodobacteraceae dominated in the winter. Neither was dominant in the fall Twenty-seven bands purified from DGGE profiles were cloned and analyzed phylogenetically. In the spring, phylum Firmicutes dominated, followed by Proteobacteria. Proteobacteria dominated in all other seasons. Thus, two cultivation-independent methods for determination of seasonal variation patterns at the phylum level were in accordance with each other.

Marine Prokaryotic Diversity of the Deep Sea Waters at the Depth of 1500 m Off the Coast of the Ulleung Island in the East Sea (Korea) (울릉도 연안 수심 1500 m에 서식하는 해양미생물군집의 분포)

  • Kim, Mi-Kyung;Khang, Yongho
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.328-331
    • /
    • 2012
  • Microbial diversity in the 1500 m depth sea waters off the coast of Ulleung island of the East Sea, Korea, was investigated. Genomic DNAs were extracted directly from the marine microbes filtered through ultramembrane filters. Pyrosequencing of 16S rDNAs of these microbes resulted in 13,029 reads, of which uncultured bacteria consisted of 54.1%, alphaproteobacteria 23.4%, and gammaproteobacteria 22.3%. Other classes such as flavobacteria, actinobacteria, and epsilonproteobacteria were distributed within 0.2% of total reads. Among the cultivable bacteria, it was found that Rhodobacteraceae family of alphaproteobacteria, Alteromonadaceae, Halomonadaceae, and Piscirickettsiaceae families of gammaproteobacteria were mostly distributed in the deep-sea waters.

Relative Effect of Glyphosate on Glyphosate-Tolerant Maize Rhizobacterial Communities is Not Altered by Soil Properties

  • Barriuso, Jorge;Mellado, Rafael P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.159-165
    • /
    • 2012
  • The rhizobacterial composition varies according to the soil properties. To test if the effect of herbicides on the rhizobacterial communities of genetically modified NK603 glyphosate-tolerant maize varies according to different soil locations, a comparison was made between the effects of glyphosate (Roundup Plus), a post-emergence applied herbicide, and a pre-emergence applied herbicide (GTZ) versus untreated soil. The potential effect was monitored by direct amplification, cloning, and sequencing of the soil DNA encoding 16S rRNA, and high-throughput DNA pyrosequencing of the bacterial DNA coding for the 16S rRNA hypervariable V6 region. The results obtained using three different methods to analyze the herbicide effect on the rhizobacterial communities of genetically modified NK603 maize were comparable to those previously obtained when glyphosate-tolerant maize was grown in soil with different characteristics. Both herbicides decreased the bacterial diversity in the rhizosphere, with Actinobacteria being the taxonomic group most affected. The results suggest that both herbicides affected the structure of the maize rhizobacterial community, but glyphosate was environmentally less aggressive.

Comparative Analysis of the Difference in the Midgut Microbiota between the Laboratory Reared and the Field-caught Populations of Spodoptera litura

  • Pandey, Neeti;Rajagopal, Raman
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.423-433
    • /
    • 2019
  • Midgut microbiota is known to play a fundamental role in the biology and physiology of the agricultural pest, Spodoptera litura. This study reports the difference in the larval midgut microbiota of field-caught and laboratory-reared populations of S. litura by performing 16S rDNA amplicon pyrosequencing. Field populations for the study were collected from castor crops, whereas laboratory-reared larvae were fed on a regular chickpea based diet. In total, 23 bacterial phylotypes were observed from both laboratory-reared and field-caught caterpillars. Fisher's exact test with Storey's FDR multiple test correction demonstrated that bacterial genus, Clostridium was significantly abundant (p < 0.05) in field-caught larvae of S. litura as compared to that in the laboratory-reared larvae. Similarly, bacterial genera, such as Bradyrhizobium, Burkholderia, and Fibrisoma were identified (p < 0.05) predominantly in the laboratory-reared population. The Bray-Curtis dissimilarity matrix depicted a value of 0.986, which exhibited the maximum deviation between the midgut microbiota of the laboratory-reared and field-caught populations. No significant yeast diversity was seen in the laboratory-reared caterpillars. However, two yeast strains, namely Candida rugosa and Cyberlindnera fabianii were identified by PCR amplification and molecular cloning of the internal transcribed space region in the field-caught caterpillars. These results emphasize the differential colonization of gut residents based on environmental factors and diet.

Microbial Community Analysis of a Methane-Oxidizing Biofilm Using Ribosomal Tag Pyrosequencing

  • Kim, Tae-Gwan;Lee, Eun-Hee;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.360-370
    • /
    • 2012
  • Current ecological knowledge of methanotrophic biofilms is incomplete, although they have been broadly studied in biotechnological processes. Four individual DNA samples were prepared from a methanotrophic biofilm, and a multiplex 16S rDNA pyrosequencing was performed. A complete library (before being de-multiplexed) contained 33,639 sequences (average length, 415 nt). Interestingly, methanotrophs were not dominant, only making up 23% of the community. Methylosinus, Methylomonas, and Methylosarcina were the dominant methanotrophs. Type II methanotrophs were more abundant than type I (56 vs. 44%), but less richer and diverse. Dominant non-methanotrophic genera included Hydrogenophaga, Flavobacterium, and Hyphomicrobium. The library was de-multiplexed into four libraries, with different sequencing efforts (3,915 - 20,133 sequences). Sorrenson abundance similarity results showed that the four libraries were almost identical (indices > 0.97), and phylogenetic comparisons using UniFrac test and P-test revealed the same results. It was demonstrated that the pyrosequencing was highly reproducible. These survey results can provide an insight into the management and/or manipulation of methanotrophic biofilms.

Determination of Microbial Diversity in Gouda Cheese via Pyrosequencing Analysis

  • Oh, Sangnam;Kim, Younghoon
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.125-131
    • /
    • 2018
  • The present study aimed to investigate the microbial diversity in Gouda cheese within the four months of ripening, via next-generation sequencing (NGS). Lactococcus (96.03%), and Leuconostoc (3.83%), used as starter cultures, constituted the majority of bacteria upon 454 pyrosequencing based on 16S rDNA sequences. However, no drastic differences were observed among other populations between the center and the surface portions of Gouda cheese during ripening. Although the proportion of subdominant species was <1%, slight differences in bacterial populations were observed in both the center and the surface portions. Taken together, our results suggest that environmental and processing variables of cheese manufacturing including pasteurization, starter, ripening conditions are important factors influencing the bacterial diversity in cheese and they can be used to alter nutrient profiles and metabolism and the flavor during ripening.

Phylogenetic diversity of marine bacteria dependent on the port environment around the Ulleng Island (울릉도 항구의 해양환경에 따른 해양미생물의 분포 변화)

  • Khang, Yongho;Ahn, Minkyung
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.312-317
    • /
    • 2015
  • Pyrosequencing of 16S rDNA tags was used to obtain the bacterial diversity and community structure in the uncultured seawaters as well as in the cultured seawaters, which were collected from the 7 ports (Cheonbu, Hyunpo, Taeha, Namyang, Sadong, Dodong, and Jeodong) and 1 seashore (Guam) around the Ulleng island, Korea. Alphaproteobacteria were the most abundant group in the clean seawaters such as seawaters of Taeha and Sadong ports. Gammaproteobacteria proportion increased depending upon the wastewater amounts mixed with the seawaters such as seawaters of Namyang, Dodong, and Jeodong ports. The genuses of Alteromonas (from samples of Cheonbu, Taeha, Guam, Namyang, Sadong), Shewanella (from sample of Jeodong), and Vibrio (from samples of Hyunpo and Dodong) were dominant group in each of the cultured seawaters incubated in marine broth (Difoco). The results suggest that the incoming wastewaters to the port seawaters contribute to the dynamic change of the marine bacterial community around the Ulleng island.

Analysis of Intestinal Microbiome Changes in Fruit and Vegetable Complex Extracts (과채복합추출물의 장내 마이크로바이옴 변화 분석)

  • Hyun Kyoung Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.873-878
    • /
    • 2024
  • We collected rat feces by group period after oral administration of fructooligosaccharides and fruit and vegetable complex extracts for 2 weeks in the Sprague-Dawley rat model of loperamide-induced constipation and analyzed trends in changes in the intestinal microbiome. Microbial composition analysis was performed on Fractoologosaccharide and fruit and vegetable complex extracs(FVCE), by 16S rDNA cloning and pyrosequencing to obtain basic data for the standardization and systematization of the FVCE manufacturing process. Microbial analysis of the prokaryotic community revealed a slight difference in microbial verrucomicrobiota was dominant at the phylum level. At the genus level, prevotella and muribaculaceae showed further differences at the species level. These results suggest that the microbial community used affects the quality of fruit and vegetable complex extracs(FVCE) produced. Thus, a stable microbial community must be maintained for the production of fruit and vegetable complex extracs(FVCE) with consistent quality.

Analysis of Microbial Communities in Animal Carcass Disposal Soils (가축사체 매몰지 토양의 미생물 군집 분석)

  • Park, Jeong-Ann;Choi, Nag-Choul;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.7
    • /
    • pp.503-508
    • /
    • 2013
  • The aim of this study was to investigate the microbial communities in animal carcass disposal soils to examine the possible threat of pathogens from leachate. DNA extraction was performed for the soils in three carcass disposal sites located in Gyeonggi-do, Korea, and then 16S rRNA pyrosequencing was conducted to identify the microbial communities. Results indicate that, according to phylum classification, Proteobacteria (100%) was identified in soil A, Actinobacteria (66.4%) > Proteobacteria (31.1%) > Bacteriodetes (2.1%) > Acidobacteria (0.3%) in soil B, and Actinobacteria (63.1%) > Proteobacteria (36.9%) in soil C. According to genus classification, Pseudomonas was dominant in soil A (98%), Arthrobacter in soil B (68%) and C (61%). There were no detections of pathogens such as Salmonella, Campylobacter and Clostridium perfringens. However, high concentration of Ralstonia pickettii causing bacteremia was observed. Although carcass disposal soils examined in this study were not highly contaminated with pathogens, further monitoring is still needed to examine the potential threat of pathogens in leachate derived from carcass disposal sites.

Seasonal Variation of Bacterial Community Composition in Sediments and Overlying Waters of the South East Sea (동해 남부 해역 퇴적물과 저층 해수 세균 군집 조성의 계절적 변화 연구)

  • Choi, Dong Han;Gim, Byeong-Mo;Choi, Tae Seob;Lee, Jung-Suk;Noh, Jae Hoon;Park, Young-Gyu;Kang, Seong-Gil
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.2
    • /
    • pp.147-154
    • /
    • 2014
  • Bacteria play an important role in biogeochemical cycles in marine environments and their functional attributes in ecosystems depend primarily on species composition. In this study, seasonal variation of bacterial diversity was investigated by pyrosequencing of 16S rDNA in surface sediment and overlying seawater collected in the south East Sea, planned for the site of $CO_2$ sequestration by the carbon capture and storage (CCS) project. Gammaproteobacteria was dominant in the sediment in most seasons, whereas Alphaproteobacteria was a most dominant group in the overlying water. Thus, the bacterial diversity greatly differ between sediment and seawater samples. On the genus level, bacterial diversity between two habitats was also different. However, the number of genera found over 5% were less than 10 in both habitats and the bacterial community was composed of a number of diverse minor or rare genera. Elevation of $CO_2$ concentration during a $CO_2$ storage process, could result in change of bacterial diversity. Thus, this study will be very useful to access the effect of $CO_2$ on bacterial diversity and to predict functional change of the ecosystem during the process of CCS project.