DOI QR코드

DOI QR Code

Phylogenetic diversity of marine bacteria dependent on the port environment around the Ulleng Island

울릉도 항구의 해양환경에 따른 해양미생물의 분포 변화

  • 강용호 (영남대학교 생명공학부) ;
  • 안민경 (영남대학교 생명공학부)
  • Received : 2015.08.25
  • Accepted : 2015.09.24
  • Published : 2015.09.30

Abstract

Pyrosequencing of 16S rDNA tags was used to obtain the bacterial diversity and community structure in the uncultured seawaters as well as in the cultured seawaters, which were collected from the 7 ports (Cheonbu, Hyunpo, Taeha, Namyang, Sadong, Dodong, and Jeodong) and 1 seashore (Guam) around the Ulleng island, Korea. Alphaproteobacteria were the most abundant group in the clean seawaters such as seawaters of Taeha and Sadong ports. Gammaproteobacteria proportion increased depending upon the wastewater amounts mixed with the seawaters such as seawaters of Namyang, Dodong, and Jeodong ports. The genuses of Alteromonas (from samples of Cheonbu, Taeha, Guam, Namyang, Sadong), Shewanella (from sample of Jeodong), and Vibrio (from samples of Hyunpo and Dodong) were dominant group in each of the cultured seawaters incubated in marine broth (Difoco). The results suggest that the incoming wastewaters to the port seawaters contribute to the dynamic change of the marine bacterial community around the Ulleng island.

울릉도에서 7곳의 항구(천부항, 현포항, 태하항, 남양항, 사동항, 도동항, 저동항)와 1곳의 해변(구암)에서 표층해수를 채취하였다. 배양하지 않은 시료(uncultured samples)와 배양한 시료(cultured samples)에서 각각 미생물의 16S rDNA를 pyrosequencing하여 해양미생물의 분포를 조사하였다. 태하항과 사동항의 해수처럼 청정한 해수에서는 Alphaproteobacteria 분포율이 높았고, 남양항, 도동항, 저동항의 해수처럼 생활하수나 하천수의 유입이 많은 곳에서는 Gammaproteobacteria 분포율이 증가하였다. Marine broth로 배양한 시료(cultured samples)에서는 Alteromonas (천부항, 태하항, 구암해변, 남양항, 사동항), Shewanella (저동항), Vibrio (현포항, 도동항) 속이 우점으로 분포하였다. 본 연구결과는 항구로 유입되는 하천수나 생활하수가 해양미생물의 분포에 큰 변화를 초래한다는 것을 시사한다.

Acknowledgement

Supported by : 국토해양부

References

  1. Araujo, S., Henriques, I.S., Leandro, S.M., Alves, A., Pereira, A., and Correia, A. 2014. Gulls identified as major source of fecal pollution in coastal waters: a microbial source tracking study. Sci. Total Environ. 470-471, 84-91. https://doi.org/10.1016/j.scitotenv.2013.09.075
  2. Arthur, C., Sutton-Grier, A.E., Murphy, P., and Bamford, H. 2014. Out of sight but not out of mind: harmful effects of derelict traps in selected U.S. coastal waters. Mar. Pollut. Bull. 86, 19-28. https://doi.org/10.1016/j.marpolbul.2014.06.050
  3. Bengtsson-Palme, J., Rosenblad, M.A., Molin, M., and Blomberg, A. 2014. Metagenomics reveals that detoxification systems are underrepresented in marine bacterial communities. BMC Genomics 15, 749. https://doi.org/10.1186/1471-2164-15-749
  4. Chae, J.S., Choi, M.S., Song, Y.H., Um, I.K., and Kim, J.G. 2014. Source identification of heavy metal contamination using metal association and Pb isotopes in Ulsan Bay sediments, East Sea, Korea. Mar. Pollut. Bull. 88, 373-382. https://doi.org/10.1016/j.marpolbul.2014.07.066
  5. Chandia, C. and Salamanca, M. 2012. Long-term monitoring of heavy metals in Chilean coastal sediments in the eastern South Pacific Ocean. Mar. Pollut. Bull. 64, 2254-2260. https://doi.org/10.1016/j.marpolbul.2012.06.030
  6. Cozar, A., Echevarria, F., Gonzalez-Gordillo, J.I., Irigoien, X., Ubeda, B., Hernandez-Leon, S., Palma, A.T., Navarro, S., Garcia-de-Lomas, J., Ruiz, A., et al. 2014. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 111, 10239-10244.
  7. Du, J., Xiao, K., Li, L., Ding, X., Liu, H., Lu, Y., and Zhou, S. 2013. Temporal and spatial diversity of bacterial communities in coastal waters of the South china sea. PLoS One 8, e66968. https://doi.org/10.1371/journal.pone.0066968
  8. Edlund, A. and Jansson, J.K. 2006. Changes in active bacterial communities before and after dredging of highly polluted Baltic Sea sediments. Appl. Environ. Microbiol. 72, 6800-6807. https://doi.org/10.1128/AEM.00971-06
  9. Gueguen, M., Amiard, J.C., Arnich, N., Badot, P.M., Claisse, D., Guerin, T., and Vernoux, J.P. 2011. Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French coasts. Rev. Environ. Contam. Toxicol. 213, 55-111.
  10. Han, D., Kang, I., Ha, H.K., Kim, H.C., Kim, O.S., Lee, B.Y., Cho, J.C., Hur, H.G., and Lee, Y.K. 2014. Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic Ocean during sea-ice melting. PLoS One 9, e86887. https://doi.org/10.1371/journal.pone.0086887
  11. Jing, H., Xia, X., Suzuki, K., and Liu, H. 2013. Vertical profiles of bacteria in the tropical and subarctic oceans revealed by pyrosequencing. PLoS One 8, e79423. https://doi.org/10.1371/journal.pone.0079423
  12. Joint, I., Muhling, M., and Querellou, J. 2010. Culturing marine bacteria - an essential prerequisite for biodiscovery. Microb. Biotechnol. 3, 564-575. https://doi.org/10.1111/j.1751-7915.2010.00188.x
  13. Khang, Y. 2014. Comparison of bacterial communities in beach sands along the east coast of North Gyeongsang province. Kor. J. Microbiol. 50, 376-380. https://doi.org/10.7845/kjm.2014.4067
  14. Klaus, J.S., Janse, I., Heikoop, J.M., Sanford, R.A., and Fouke, B.W. 2007. Coral microbial communities, zooxanthellae and mucus along gradients of seawater depth and coastal pollution. Environ. Microbiol. 9, 1291-1305. https://doi.org/10.1111/j.1462-2920.2007.01249.x
  15. Lambert, M.S., Ozbay, G., and Richards, G.P. 2009. Seawater and shellfish (Geukensia demissa) quality along the Western Coast of Assateague Island National Seashore, Maryland: an area impacted by feral horses and agricultural runoff. Arch. Environ. Contam. Toxicol. 57, 405-415. https://doi.org/10.1007/s00244-008-9277-4
  16. Liu, Z. and Liu, J. 2013. Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the Deepwater Horizon oil spill. Microbiologyopen 2, 492-504. https://doi.org/10.1002/mbo3.89
  17. Marietou, A. and Bartlett, D.H. 2014. Effects of high hydrostatic pressure on coastal bacterial community abundance and diversity. Appl. Environ. Microbiol. 80, 5992-6003. https://doi.org/10.1128/AEM.02109-14
  18. McQuaig, S., Griffith, J., and Harwood, V.J. 2012. Association of fecal indicator bacteria with human viruses and microbial source tracking markers at coastal beaches impacted by nonpoint source pollution. Appl. Environ. Microbiol. 78, 6423-6432. https://doi.org/10.1128/AEM.00024-12
  19. Mika, K.B., Imamura, G., Chang, C., Conway, V., Fernandez, G., Griffith, J.F., Santoro, A.E., and Boehm, A.B. 2007. Frequent occurrence of the human-specific Bacteroides fecal marker at an open coast marine beach: relationship to waves, tides, and traditional indicators. Environ. Microbiol. 9, 2038-2049. https://doi.org/10.1111/j.1462-2920.2007.01319.x
  20. Montevecchi, W., Fifield, D., Burke, C., Garthe, S., Hedd, A., Rail, J.F., and Robertson, G. 2012. Tracking long-distance migration to assess marine pollution impact. Biol. Lett. 8, 218-221. https://doi.org/10.1098/rsbl.2011.0880
  21. Sakellari, A., Karavoltsos, S., Theodorou, D., Dassenakis, M., and Scoullos, M. 2013. Bioaccumulation of metals (Cd, Cu, Zn) by the marine bivalves M. galloprovincialis, P. radiata, V. verrucosa and C. chione in Mediterranean coastal microenvironments: association with metal bioavailability. Environ. Monit. Assess. 185, 3383-3395. https://doi.org/10.1007/s10661-012-2799-2
  22. Scott, T.M., Rose, J.B., Jenkins, T.M., Farrah, S.R, and Lukasik, J. 2002. Microbial source tracking: current methodology and future directions. Appl. Environ. Microbiol. 68, 5796-5803. https://doi.org/10.1128/AEM.68.12.5796-5803.2002
  23. Signori, C.N., Thomas, F., Enrich-Prast, A., Pollery, R.C., and Sievert, S.M. 2014. Microbial diversity and community structure across environmental gradients in Bransfield Strait, Western Antarctic Peninsula. Front. Microbiol. 5, 647.
  24. Sinaei, M. and Mashinchian, A. 2014. Polycyclic aromatic hydrocarbons in the coastal sea water, the surface sediment and Mudskipper Boleophthalmus dussumieri from coastal areas of the Persian Gulf: source investigation, composition pattern and spatial distribution. J. Environ. Health Sci. Eng. 12, 59. https://doi.org/10.1186/2052-336X-12-59
  25. Sjostedt, J., Martiny, J.B., Munk, P., and Riemann, L. 2014. Abundance of broad bacterial taxa in the sargasso sea explained by environmental conditions but not water mass. Appl. Environ. Microbiol. 80, 2786-2795. https://doi.org/10.1128/AEM.00099-14
  26. Suarez-Ulloa, V., Fernandez-Tajes, J., Manfrin, C., Gerdol, M., Venier, P., and Eirin-Lopez, J.M. 2013. Bivalve omics: state of the art and potential applications for the biomonitoring of harmful marine compounds. Mar. Drugs 11, 4370-4389. https://doi.org/10.3390/md11114370
  27. Suh, S.S., Park, M., Hwang, J., Kil, E.J., Jung, S.W., Lee, S., and Lee, T.K. 2015. Seasonal dynamics of marine microbial community in the south sea of Korea. PLoS One 10, e0131633. https://doi.org/10.1371/journal.pone.0131633
  28. Tseng, C.H., Chiang, P.W., Lai, H.C., Shiah, F.K., Hsu, T.C., Chen, Y.L., Wen, L.S., Tseng, C.M., Shieh, W.Y., Saeed, I., et al. 2015. Prokaryotic assemblages and metagenomes in pelagic zones of the South China Sea. BMC Genomics 16, 219. https://doi.org/10.1186/s12864-015-1434-3
  29. Van Cauwenberghe, L., Vanreusel, A., Mees, J., and Janssen, C.R. 2013. Microplastic pollution in deep-sea sediments. Environ. Pollut. 182, 495-499. https://doi.org/10.1016/j.envpol.2013.08.013
  30. Vetriani, C., Voordeckers, J.W., Crespo-Medina, M., O'Brien, C.E., Giovannelli, D., and Lutz, R.A. 2014. Deep-sea hydrothermal vent Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap). ISME J. 8, 1510-1521.
  31. Von Glasow, R., Jickells, T.D., Baklanov, A., Carmichael, G.R., Church, T.M., Gallardo, L., Hughes, C., Kanakidou, M., Liss, P.S., Mee, L., et al. 2013. Megacities and large urban agglomerations in the coastal zone: interactions between atmosphere, land, and marine ecosystems. Ambio. 42, 13-28. https://doi.org/10.1007/s13280-012-0343-9
  32. Wang, Z.H., Yang, J.Q., Zhang, D.J., Zhou, J., Zhang, C.D., Su, X.R., and Li, T.W. 2014. Composition and structure of microbial communities associated with different domestic sewage outfalls. Genet. Mol. Res. 13, 7542-7552. https://doi.org/10.4238/2014.September.12.21
  33. Zhang, Z.W., Xu, X.R., Sun, Y.X., Yu, S., Chen, Y.S., and Peng, J.X. 2014. Heavy metal and organic contaminants in mangrove ecosystems of China: a review. Environ. Sci. Pollut. Res. Int. 21, 11938-11950. https://doi.org/10.1007/s11356-014-3100-8