• Title/Summary/Keyword: 12종 차종분류

Search Result 8, Processing Time 0.024 seconds

Vehicle Classification Scheme of Two-Axle Unit Vehicle Based on the Laser Measurement of Height Profiles (차량 형상자료를 이용한 2축 차량의 차종분류 방안)

  • Oh, Ju-Sam;Jang, Kyung-Chan;Kim, Min-Sung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.47-52
    • /
    • 2011
  • Vehicle classification data are considerably used in the almost all fields of transportation planning and engineering. Highway agencies use a large number of vehicle classification schemes. Vehicles on the national highway are classified by 12-Category classification system, using number of axles, distances between axles, vehicle length, overhang, and other factors. In the case of using existing axle-sensor-based classification counters (that is, 12-category classification system), two-axle vehicles(Class 1 to 4) can be erroneously classified because a passenger vehicle becomes larger and similar with class 3 and 4. In this reason, this study proposes the vehicle classification scheme based on using vehicle height profiles obtained by a laser sensors. Also, the accuracy of the proposed method are tested through a field study.

New Vehicle Classification Algorithm with Wandering Sensor (원더링 센서를 이용한 차종분류기법 개발)

  • Gwon, Sun-Min;Seo, Yeong-Chan
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.6
    • /
    • pp.79-88
    • /
    • 2009
  • The objective of this study is to develop the new vehicle classification algorithm and minimize classification errors. The existing vehicle classification algorithm collects data from loop and piezo sensors according to the specification("Vehicle classification guide for traffic volume survey" 2006) given by the Ministry of Land, Transport and Maritime Affairs. The new vehicle classification system collects the vehicle length, distance between axles, axle type, wheel-base and tire type to minimize classification error. The main difference of new system is the "Wandering" sensor which is capable of measuring the wheel-base and tire type(single or dual). The wandering sensor obtains the wheel-base and tire type by detecting both left and right tire imprint. Verification tests were completed with the total traffic volume of 762,420 vehicles in a month for the new vehicle classification algorithm. Among them, 47 vehicles(0.006%) were not classified within 12 vehicle types. This results proves very high level of classification accuracy for the new system. Using the new vehicle classification algorithm will improve the accuracy and it can be broadly applicable to the road planning, design, and management. It can also upgrade the level of traffic research for the road and transportation infrastructure.

Improvement of Vehicle Classification Method using Vehicle Height Measurement (차량높이 계측을 통한 차종분류 향상 방안 연구)

  • Oh, Ju-Sam;Jang, Kyung-Chan;Kim, Min-Sung
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.47-51
    • /
    • 2010
  • A vehicle classification data is essential for traffic road planning and pavement. In this study, the vehicle height, vehicle criteria for classification applied to measure the height of the car driving has devised a way to install equipment. It is capable of measuring the vehicle height was confirmed to field experiments, the measurement system is obtained to the vehicle length and height data. In this experiment, results showed the accuracy of 88.6% compared to classification data using the discriminant function obtained from video replaying. The height of vehicle applying the classification criteria can be utilized to determine the vehicle class.

Developing a Vehicle Classification Algorithm Based on the Trend Line to Vehicle Lengths and Wheelbases (차량길이와 축거의 추세선을 이용한 차종분류 알고리즘 개발)

  • Kim, Hyeong-Su;Kim, Min-Seong;O, Ju-Sam
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.55-61
    • /
    • 2009
  • In order to observe the impact of a type of vehicles for traffic flows and pavement, vehicle classifications is conducted. Korean Ministry of Land, Transport and Maritime Affairs provides 12-type vehicle classifications on National expressways, National highways, and Provincial roads. Current AVC (Automatic Vehicle Classification) devices decide vehicle types comparing measurements of vehicle lengths, wheelbases, overhangs etc. to a reference table including those of all types of models. This study developed an algorithm for macroscopic vehicle classification which is less sensitive to tuning sensors and updating the reference table. For those characteristics, trend lines in vehicle lengths and wheelbases are employed. To assess the algorithm developed, vehicle lengths and wheelbases were collected from an AVC device. In this experiment, this algorithm showed the accuracy of 88.2 % compared to true values obtained from video replaying. Our efforts in this study are expected to contribute to developing devices for macroscopic vehicle classification.

A Study on Road Traffic Volume Survey Using Vehicle Specification DB (자동차 제원 DB를 활용한 도로교통량 조사방안 연구)

  • Ji min Kim;Dong seob Oh
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.93-104
    • /
    • 2023
  • Currently, the permanent road traffic volume surveys under Road Act are conducted using a intrusive Automatic Vehicle Classification (AVC) equipments to classify 12 categories of vehicles. However, intrusive AVC equipment inevitably have friction with vehicles, and physical damage to sensors due to cracks in roads, plastic deformation, and road construction decreases the operation rate. As a result, accuracy and reliability in actual operation are deteriorated, and maintenance costs are also increasing. With the recent development of ITS technology, research to replace the intrusive AVC equipment is being conducted. However multiple equipments or self-built DB operations were required to classify 12 categories of vehicles. Therefore, this study attempted to prepare a method for classifying 12 categories of vehicles using vehicle specification information of the Vehicle Management Information System(VMIS), which is collected and managed in accordance with Motor Vehicle Management Act. In the future, it is expected to be used to upgrade and diversify road traffic statistics using vehicle specifications such as the introduction of a road traffic survey system using Automatic Number Plate Recognition(ANPR) and classification of eco-friendly vehicles.

Class 1·3 Vehicle Classification Using Deep Learning and Thermal Image (열화상 카메라를 활용한 딥러닝 기반의 1·3종 차량 분류)

  • Jung, Yoo Seok;Jung, Do Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.96-106
    • /
    • 2020
  • To solve the limitation of traffic monitoring that occur from embedded sensor such as loop and piezo sensors, the thermal imaging camera was installed on the roadside. As the length of Class 1(passenger car) is getting longer, it is becoming difficult to classify from Class 3(2-axle truck) by using an embedded sensor. The collected images were labeled to generate training data. A total of 17,536 vehicle images (640x480 pixels) training data were produced. CNN (Convolutional Neural Network) was used to achieve vehicle classification based on thermal image. Based on the limited data volume and quality, a classification accuracy of 97.7% was achieved. It shows the possibility of traffic monitoring system based on AI. If more learning data is collected in the future, 12-class classification will be possible. Also, AI-based traffic monitoring will be able to classify not only 12-class, but also new various class such as eco-friendly vehicles, vehicle in violation, motorcycles, etc. Which can be used as statistical data for national policy, research, and industry.

Development of Vehicle Classification Algorithm using Non-Contact Treadle Sensor for Toll Collect System (통행료징수시스템을 위한 무접점 답판 방식의 차종분류 알고리즘 개발)

  • Seo, Yeon-Gon;Lew, Chang-Guk;Lee, Bae-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1237-1244
    • /
    • 2016
  • Vehicle classification system in domestic tollgates is usually to use treadle sensor for calculating wheel width and tread of the vehicle. Due to the impact that occurs when the wheels of the vehicle contact, treadle sensor requires high durability. Recently, KHC(Korea Highway Corporation) began operating high-speed lane for cargo truck. High-speed cargo truck generate more impact the design criteria of previous treadle. Therefore, an increase in the maintenance and management costs of the treadle damage is concerned. In this paper, we propose an algorithm to classify vehicles using non-contact treadle sensors for improving durability from physical impacts. This was based on the KHC's classification criteria and showed a classification accuracy of 99.5 % in one experiment with 1892 vehicles through Changwon tollgate in 1020 local road. Therefore, it shows that vehicle classification system using non-contact treadle sensor could be applied to domestic toll tollgates, effectively.

Development and Application of the High Speed Weigh-in-motion for Overweight Enforcement (고속축하중측정시스템 개발과 과적단속시스템 적용방안 연구)

  • Kwon, Soon-Min;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.69-78
    • /
    • 2009
  • Korea has achieved significant economic growth with building the Gyeongbu Expressway. As the number of new road construction projects has decreased, it becomes more important to maintain optimal status of the current road networks. One of the best ways to accomplish it is weight enforcement as active control measure of traffic load. This study is to develop High-speed Weigh-in-motion System in order to enhance efficiency of weight enforcement, and to analyze patterns of overloaded trucks on highways through the system. Furthermore, it is to review possibilities of developing overweight control system with application of the HS-WIM system. The HS-WIM system developed by this study consists of two sets of an axle load sensor, a loop sensor and a wandering sensor on each lane. A wandering sensor detects whether a travelling vehicle is off the lane or not with the function of checking the location of tire imprint. The sensor of the WIM system has better function of classifying types of vehicles than other existing systems by detecting wheel distance and tire type such as single or dual tire. As a result, its measurement errors regarding 12 types of vehicle classification are very low, which is an advantage of the sensor. The verification tests of the system under all conditions showed that the mean measurement errors of axle weight and gross axle weight were within 15 percent and 7 percent respectively. According to the WIM rate standard of the COST-323, the WIM system of this study is ranked at B(10). It means the system is appropriate for the purpose of design, maintenance and valuation of road infrastructure. The WIM system in testing a 5-axle cargo truck, the most frequently overloaded vehicle among 12 types of vehicles, is ranked at A(5) which means the system is available to control overloaded vehicles. In this case, the measurement errors of axle load and gross axle load were within 8 percent and 5 percent respectively. Weight analysis of all types of vehicles on highways showed that the most frequently overloaded vehicles were type 5, 6, 7 and 12 among 12 vehicle types. As a result, it is necessary to use more effective overweight enforcement system for vehicles which are seriously overloaded due to their lift axles. Traffic volume data depending upon vehicle types is basic information for road design and construction, maintenance, analysis of traffic flow, road policies as well as research.

  • PDF