• Title/Summary/Keyword: 1.3 dipolar 반응

Search Result 19, Processing Time 0.029 seconds

Synthesis and Antibacterial Activity of New Tetrazole Derivatives (새로운 Tetrazole유도체의 합성과 항균활성)

  • Mulwad, V.V.;Pawar, Rupesh B;Chaskar, Atul C
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.3
    • /
    • pp.249-256
    • /
    • 2008
  • 3-Acetyl/Formyl 4-hydroxy-2H(1)-benzopyran-2-one on treatment with malonitrile and ethyl cyanoacetate yielded 1,1-dicyano-2-[4/-hydroxy-2/H(1)-benzopyran-2/-one-3/-yl] ethene/propene 2a-h and ethyl-2-cyano-3-[4/-hydroxy-2/H (1)-benzopyran-2/-one-3/-yl] propenoate/butenoate 3a-h respectively. The 1,3 dipolar reaction of 2a-h with NaN3 gave the tetrazole derivative 4a-h. 3a-h on cyclization with PPA gave 3-cyano-2H,5H-pyrano [3, 2-c] benzopyran-2,5-diones 5a-h which on 1,3 dipolar reaction with NaN3 to gave 3-(1/H-tetrazol-5/-yl)-2H,5H-pyrano[3, 2-c] benzopyran-2,5-diones 6a-h. The structures of the compounds have been established on the basis of the spectral and analytical data. All the compounds were screened for their antimicrobial activities and have been found to exhibited significant antibacterial activities. Compounds 2h and 4h showed the activity 50g/mL.

High Pressure Effects on 1,3-Dipolar Cycloaddition of Azides with Alkynes (아자이드와 알킨의 1,3-쌍극자 고리첨가반응에서 고압이 반응속도에 미치는 영향에 대한 연구)

  • Kwon, Jinju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.736-742
    • /
    • 2015
  • The effect of pressure on 1,3-dipolar cycloaddtion has been studied by means of FT-IR and NMR spectroscopy. Pressure accelerates 1,3-dipolar cycloaddition without solvent or catalyst. This simple and inexpensive method eliminates the need for work-up or purification. The method is expected to be applied to the synthesis of binders for solid rocket propellants.

Effect of Themperature on the 1,3-dipolar Cycloaddition of 3-phenyloxadiazole Derivatives (3-Phenyloxadiazole 유도체의 1,3-dipolar Cycloaddition 반응에 미치는 온도의 영향)

  • Hwang, Sung-Kwy;Lee, Ki-Chang;Choi, Bong-Jong;Lee, Kwang-Ill
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.39-46
    • /
    • 1997
  • Ultraviolet spectrophotometric investigation has been carried out on the rate constants for 1,3-dipolar cycloaddition of 4-substituted-3-phenyloxadiazole derivatives with dipolarophiles such as phenyl acetylene, propiolic acid methyl ester and dimethylacetylene dicarboxylate. From there, the rate constants for 1,3-dipolar cycloaddition were determined at 80, 100 and $120^{\circ}C$, and the reaction rates were increased with increasing temperature. From these rate constants, the values of the thermodynamic activation parameters were obtained. Some thermodynamic activation parameters such as $E_{\alpha}$, ${\Delta}H^{\ast}$, ${\Delta}S^{\ast}$ and ${\Delta}G^{\ast}$ from Arrhenius equation were also calculated for the electrophilic 1,3-dipolar cycloaddition of 3-phenyloxadiazole derivatives with dipolarophiles. In order to the proposal the mechanism and reactivity of 1,3-dipolar cycloaddition reaction, the effect of substituents having various kinds of electron withdrawing or releasing groups were examinated. Considering the effect of substituents, an electron withdrawing group attached at the 4-carbon position in 3-phenyloxadiazole derivatives decreases the reaction rate because of the lack of electron density in 3-phenyloxadiazole ring.

Hydrolysis Mechanism of N-(2,4-dinitrophenyl)benzhydrazonyl Bromide Derivatives (N-(2,4-dinitrophenyl)benzhydrazonyl Bromide 유도체의 가수분해 반응메카니즘)

  • Park, Chan Il;Cha, Ki Won;Lee, Ik Choon;Chang, Byung Du
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.4
    • /
    • pp.198-204
    • /
    • 1997
  • The rate constants for the hydrolysis of N-(2,4-dinitrophenyl)benzhydrazonyl bromide and its derivatives were determined by ultraviolet visible spectrophotometry at 20$^{\circ}C$ and a rate equation which could be applied over a wide pH range was obtained. On the basis of rate equations derived and judging from the solvent effect, substituent effect, salt effect, thermodynamic parameter, plausible mechanisms of hydrolysis have been proposed. It may be concluded that the hydrolysis through SN1 mechanism via carbonium ion intermdiate to pH 3.0, and pH 10.0, the hydrolysis proceeds through 1,3-dipolar or SN2 mechanism.

  • PDF

Immobilization of Homogeneous Catalyst on Functionalized Carbon Nanotube via 1,3-Dipolar Cycloaddition Reaction and its Ethylene Polymerization (1,3-Dipolar cycloaddition 반응을 통해 기능화된 carbon nanotube 표면 위에 균일계 촉매 담지 및 에틸렌 중합)

  • Lee, Jeong Suk;Lee, Se Young;Lee, Jin Woo;Ko, Young Soo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.574-581
    • /
    • 2016
  • In this study, CNT functionalized with pyrrolidine ring via 1,3-dipolar cycloaddition reaction with various amino acid and aldehyde was synthesized. Metallocene was subsequently immobilized on the functionalized CNT and CNT/polyethylene composite was prepared via in-situ ethylene polymerization. The polymerization activities of metallocene supported on CNT functionalized with glycine and benzaldehyde (Gly+BA-CNT) were similar to those of metallocene supported on CNT functionalized with N-benzyloxycarbonylglycine and paraformaldehyde (Z-Gly+PFA-CNT) although its Zr content was lower than that of Z-Gly+PFA-CNT. In the case of metallocene supported on Z-Gly+PFA-CNT, the even distribution of active sites hindered the diffusion of ethylene monomer and cocatalyst MAO due to steric hindrance during ethylene polymerization. Compared to polyethylene produced from homogeneous metallocene catalysts, CNT/PE composites had a higher initial degradation temperature ($T_{onset}$) and maximum mass loss temperature ($T_{max}$). It suggests that pyrrolidine functionalized CNT is uniformly dispersed and strongly interacted with the PE matrix, enhancing the thermal stability of PE.

Synthesis of Novel 1,2-Diazepino[3,4-b]quinoxaline and Pyridazino[3,4-b]quinoxaline Derivatives (새로운 1,2-Diazepino[3,4-b]quinoxaline과 Pyridazino[3,4-b]quinoxaline)

  • Kim, Ho Sik;Jeong, Geuk
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.3
    • /
    • pp.302-306
    • /
    • 1999
  • The 1,3-dipolar cycloaddition reaction of the quinoxaline 4-oxide 10 with 2-chloroacrylonitrile gave the 2,3-dihydro-lH-1,2-diazepino[3,4-blquinoxalines lla, b, respectively, which were converted into the 2,3,4,6-tetrahydro-lH-l,2-diazepino[3,4-b]quinoxaline 12. The reaction of compound lla with selenium dioxide in acetic acid/water resulted in ring transformation to give the 1,4-dihydro-4-oxopyridazino[3,4-blquinoxaline 13.

  • PDF

Synthesis of Pyrazolylquinoxalines and Pyrazolylpyrrolo[1,2-a]-quinoxalines (Pyrazolylquinoxaline류 및 Pyrazolylpyrrolo[1,2-a]-quinoxaline류의 합성)

  • Kim, Ho Sik;Lee, Seong Uk;Jeong, Won Young;Han, Sung Wook;Kim, Dong Il;Yoshihisa Kurasawa
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.4
    • /
    • pp.318-324
    • /
    • 2001
  • The reaction of 6-chloro-2-hydrazinoquinoxaline(4) or 6-chloro-2-hydrazinoquinoxaline 4-oxide(7) with alkyl (ethoxymethylene)cyanoacetates gave pyrazolylquinoxalines(5, 8). The reaction of compounds 8 with dimethyl acetylenedicarboxylate resulted in the 1,3-dipolar cycloaddition reaction and then ring transformation to afford pyrazolylpyrrolo[1,2-a]quinoxalines(9).

  • PDF

Nucleophilic Substitutions at a Carbonyl Carbon Atom (ⅩⅡ). Solvolysis of Methylchloroformate and Its Thioanalogues in $CH_3CN-H_2O$ and $CH_3COCH_3-H_2$ Mixtures (카르보닐탄소원자의 친핵성 치환반응 (제 12 보).아세토니트릴-물 및 아세톤-물 혼합용 매속에서 메틸클로로훠메이트와 그 티오유도체들의 가용매분해반응에 관한 연구)

  • Sangmoo La;Kyeong Shin Koh;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.8-14
    • /
    • 1980
  • Solvolysis rate constants for methylchloroformate, $CH_3O$(CO)Cl, methylthiono-chloroformate, $CH_3O$(CS)Cl, and methylthiolchloroformate, $CH_3S$(CO)Cl, have been determined conductometrically in acetone-water and acetonitrile-water mixtures, and activation parameters, ${\Delta}H^{\neq}$ and ${\Delta}S^{\neq}$, have been derived. Results show that in water-rich regions the order of rate increases as $$CH_3O(CO)Cl while in dipolar aprotic solvent-rich region this order reverses. The plots of log k vs. solvent parameters, Y, $\frac{D-1}{2D+1}$ and log($H_2$) show that the order of rate increase in water-rich region is the results of increase in $S_N1$ character. It is concluded that $CH_3S$(CO)Cl solvolyzes via $S_N1$ mechanism whereas $CH_3O$(CO)Cl reacts via $S_N2$ and $CH_3O$(CS)Cl via intermediate mechanism in water-rich region.

  • PDF