• 제목/요약/키워드: 1.2/50[${\mu}s$] Impulse Voltage

검색결과 20건 처리시간 0.021초

서지전류에 의한 누전차단기의 의도하지 않은 트립에 대한 신뢰성 (Reliability on the Unintended Trips of Residual Current Operated Circuit Breakers due to Surge Currents)

  • 이복희;김상현;김유하
    • 조명전기설비학회논문지
    • /
    • 제26권5호
    • /
    • pp.79-84
    • /
    • 2012
  • As the huge economical loss and function paralysis of information technology-based systems can be caused by the misoperation of residual current devices(RCDs) due to surge voltages and currents, RCDs shall not operate by surge currents. In this paper, in order to evaluate the reliability of residual current operated circuit-breakers with integral overcurrent protection for household and similar uses((RCBOs) stressed by surges, the unintended trip characteristics of RCBOs under surge currents were experimentally investigated using the combination wave generator. Seven different types of single-phase RCBOs being present on the domestic market were investigated according to KS C IEC 61009-1 standard. As a result, all kinds of specimens were satisfied the requirements for 0.5 [${\mu}s$]/100[kHz] ring wave impulse currents. Most of specimens stressed by the 8/20[${\mu}s$] impulse current tripped at least one or more, and some of them were broken down during consecutive tests. It was found that only one type of specimens meets the L-N mode immunity to the combination wave of 1.2/50[${\mu}s$] impulse voltage and 8/20[${\mu}s$] impulse current.

준평등전계에서 임펄스전압에 대한 N2가스의 절연파괴특성 (Dielectric Characteristics of N2 Gas under Impulse Voltage in a Quasi-Uniform Electric Field)

  • 이복희;김동규;이봉
    • 조명전기설비학회논문지
    • /
    • 제24권8호
    • /
    • pp.126-132
    • /
    • 2010
  • 본 논문은 준평등전계중에서 임펄스전압에 대한 $N_2$가스의 절연파괴특성에 관한 것으로 실험은 1.2/50[${\mu}s$] 표준뇌임펄스전압, 180/2500[${\mu}s$] 개폐임펄스전압과 500[ns]/1[MHz] 급준성 과도과전압이 인가된 전극계에서 이루어졌다. 구-평판 전극의 간격은 14[mm]이고, 전계이용률은 71.2[%]이었으며 가스압력은 0.2~0.6[MPa]범위로 하였다. 그 결과 절연파괴는 스트리머방전에 의하여 일어났으며, 절연파괴전압은 상승시간이 빠른 급준성 과도과전압에서 가장 높게 나타났다. 정극성 절연파괴전압이 부극성보다 높았으며, 정극성의 경우 절연파괴까지의 시간도 더 긴 것으로 나타났다.

Solid Core Suspension Disc Insulators Preventing Puncture Caused by Steep Front Surge Voltage

  • Sangkasaad, Samruay
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권5호
    • /
    • pp.165-170
    • /
    • 2003
  • This paper presents development of solid core suspension disc insulators (cap and cap suspension disc insulator) for replacing cap and pin suspension disc insulators in overhead transmission and distribution lines which expose to lightning discharges. By this means the punctured problem caused by steep front surge voltage created by lightning discharge on the lines can be solved. The solid core suspension insulator was designed and constructed based on the dimensions of conventional suspension disc insulators (cap and pin insulators). The insulators are made of alumina porcelain. The electrical and mechanical characteristics of the solid core suspension insulators were carried out. The puncture test was performed in the air by applying steep front impulse voltage with amplitude about 2.5 per unit of 50% flashover (CFO) of the insulator unit at negative standard lightning impulse $1.2/50\;\mu\textrm{s}$ with steepness up to $9200\;kV/\mu\textrm{s}$. The testing results show that solid core suspension disc insulators are not punctured eventhough the steepness of the steep front impulse voltage was increased up to $9200\;kV/\mu\textrm{s}$.

조명기기의 임펄스내전압 성능의 분석 (Analysis of Impulse Withstand Voltage Performance of Lighting Equipment)

  • 이복희;방평호
    • 조명전기설비학회논문지
    • /
    • 제28권3호
    • /
    • pp.91-96
    • /
    • 2014
  • Modern electronic circuits are becoming more vulnerable to damage by surges, and it is required to improve the impulse withstand voltage performance of electrical and electronic equipment. This paper presents the impulse withstand voltage performance of lighting equipment connected to power lines, and the impulse withstand voltage tests for fluorescent lamp, LED lamp and halogen lamp were carried out according to the reference standards under normal service conditions. To conduct performance tests against lightning surge, a combination wave ($1.2/50{\mu}s$ voltage - $8/20{\mu}s$ current) was employed. The test surge was applied between lines or between line and ground of the specimen to be measured. The test surge was applied synchronized at the peak value of the positive and negative AC voltage waves. As a consequence, some specimens satisfied the impulse withstand voltage test criteria, but lighting equipment such as 36W fluorescent lamps, 5W and 5.5W LED lamps and 50W halogen lamp were damaged at the test voltage levels between power lines. It is needed to improve the qualities of lighting equipment to satisfy EMC immunity requirements of equipment for general lighting purposes.

산화아연 피뢰기 소자의 다중 뇌 임펄스 특성 (Effect of Multiple Lightning Impulse Currents on Zinc Oxide Arrester Blocks)

  • 이복희;강성만;박건영;최휘성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.22-24
    • /
    • 2003
  • In this work, in order to investigate the effect of multiple lightning impulse currents on zinc oxide arrester blocks. We have been designed and fabricated a multi-impulse generator which can produce quintuple voltages with $1.2/50{\mu}s$ to 100kV and quintuple currents with $8/20{\mu}s$ to 12kA and we have evaluated the characteristics of zinc oxide arrester block using several electrical and physical methods after the multi-impulse test. It was found that the multi-impulse failures of ZnO arrester blocks were mainly caused by surface flashover and the multi-impulse currents test would be more suitable than single impulse current test in evaluation of the characteristics of zinc oxide arrester blocks corresponding to actual situations.

  • PDF

낙뢰 리더의 대지부착과정에 대한 기초적 연구 (A Basic Study on the Attachment Process of Lightning Leader to Ground)

  • 유양우;김승민;김유하;이복희
    • 조명전기설비학회논문지
    • /
    • 제28권10호
    • /
    • pp.82-88
    • /
    • 2014
  • This paper presents the results of model tests for the attachment process of lightning leader to ground which is one of poorly understood processes of cloud-to-ground lightning discharges. In order to simulate the attachment process of lightning leader to ground, we investigated the discharge characteristics of air gap between the tip of needle-shaped electrode and the soil surface as a parameter of moisture content in soils when the positive and negative $1.2/50{\mu}s$ lightning impulse voltages are applied. The breakdown voltage and the discharge light were observed. As a result, the attachment processes of lightning leader to ground are strongly dependent on the grain size and the moisture content of soils. The time to breakdown was shortened with increasing the magnitude of incident impulse voltages. The delay time from application of the highest voltage to breakdown in sand is shortened with increasing the moisture content. The delay time from application of the voltage to breakdown in gravel varied from about $0.5{\mu}s$ to several ${\mu}s$. As the moisture content in soil increases, the breakdown voltages are decreased and the breakdown voltage versus time to breakdown curves are shifted toward the lower side. The results obtained in this work are similar to those for non-uniform air gap stressed by lightning impulse voltages.

Influence of SF6/N2 Gas Mixture Ratios on the Lightning Streamer Propagation Characteristics of 22 kV MV Circuit Breaker

  • Gandhi, R.;Chandrasekar, S.;Nagarajan, C.
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1663-1672
    • /
    • 2018
  • In recent times, gas insulated medium voltage (MV) circuit breakers (CB) form a vital component in power system network, considering its advantages such as reduced size and safety margins. Gas insulation characteristics of circuit breakers are generally measured by lightning impulse (LI) test according to IEC standard 60060-1 as a factory routine test. Considering the environmental issues of $SF_6$ gas, many research works are being carried out towards the mixture of $SF_6$ gases for high voltage insulation applications. However, few reports are only available regarding the LI withstand and streamer propagation characteristics (at both positive and negative polarity of waveform) of $SF_6/N_2$ gas mixture insulated medium voltage circuit breakers. In this paper, positive and negative polarity LI tests are carried out on 22 kV medium voltage circuit breaker filled with $SF_6/N_2$ gas mixture at different gas pressures (1-5 bar) and at different gas mixture ratios. Important LI parameters such as breakdown voltage, streamer velocity, time to breakdown and acceleration voltage are evaluated with IEC standard LI ($1.2/50{\mu}s$) waveform. Weibull distribution analysis of LI breakdown voltage data is carried out and 50% probability breakdown voltage, scale parameter and shape parameter are evaluated. Results illustrate that the $25%SF_6+75%N_2$ gas filled insulation considerably enhances the LI withstand and breakdown strength of MV circuit breakers. LI breakdown voltage of circuit breaker under negative polarity shows higher value when compared with positive polarity. Results show that maintaining the gas pressure at 0.3 MPa (3 bar) with 10% $SF_6$ gas mixed with 90% $N_2$ will give optimum lighting impulse withstand performance of 22 kV MV circuit breaker.

절연유체 내 2상유동을 고려한 뇌임펄스 응답 유한요소해석 (Finite Element Analysis for Dielectric Liquid Discharge under Lightning Impulse Considering Two-Phase Flow)

  • 이호영;이종철;장용무;이세희
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2097-2102
    • /
    • 2011
  • Discharge analysis technique for dielectric liquid was presented by using the Finite Element Analysis (FEA) under a lightning impulse incorporating two-phase flow phenomena which described gas and liquid phases in discharge space. Until now, the response of step voltage has been extensively explored, but that of lightning impulse voltage was rarely viewed in the literature. We, therefore, developed an analyzing technique for dielectric liquid in a tip-sphere electrode stressed by a high electric field. To capture the bubble phase, the Heaviside function was introduced mathematically and the material functions for the ionization, dissociation, recombination, and attachment were defined in liquid and bubble, respectively. By using this numerical setup, the molecular dissociation and ionization mechanisms were tested under low and high electric fields resulted from the lightning impulse voltage of 1.2/50 ${\mu}s$. To verify our numerical results, the velocity of electric field wave was measured and compared to the previous experimental results which can be viewed in many papers. Those results had good agreement with each other.

임펄스전압에 대한 N2가스의 절연파괴특성 (Electrical Breakdown Characteristics of N2 Gas under Impulse Voltages)

  • 신희경;김동규;이복희
    • 조명전기설비학회논문지
    • /
    • 제25권2호
    • /
    • pp.131-136
    • /
    • 2011
  • This paper aims to examine the possibility of using an environmentally friendly $N_2$ as an alternative gas to $SF_6$. For this purpose, we have investigated breakdown characteristics of $N_2$ under impulse voltages in a quasi-uniform electric field gap. The 1.2/50[${\mu}s$] lightning impulse voltage, switching impulse voltages and oscillatory impulse voltages were applied at the test gap. The electric field utilization factor ranges from 0.5 to 0.8. The experimental data of $SF_6$ and $N_2$ acquired in the same experimental condition are presented in parallel for comparison. As a result, the breakdown voltages in $SF_6$ and $N_2$ are linearly increased with the gas pressure, also the breakdown voltages in $N_2$ are increased with increasing the gap distance and electric field utilization factor. The positive breakdown voltages are higher than the negative breakdown voltages. The nagative basic lightning impulse withstand level of 150[kV] in $N_2$ of about 0.5[MPa] is nearly equal to that in $SF_6$ of 0.15[MPa]. It is seen from the results obtained in this work that $N_2$ can be used as an eco-friendly alternative gas to $SF_6$ in distribution power equipment.

뇌임펄스전압에 의한 불평등전계에서 토양방전특성 (Soil Discharge Characteristics in Inhomogeneous Field Caused by Lightning Impulse Voltages)

  • 유양우;김승민;김유하;이복희
    • 조명전기설비학회논문지
    • /
    • 제29권4호
    • /
    • pp.95-101
    • /
    • 2015
  • This paper presents experimental results about characteristics of soil discharge as a function of moisture content when the $1.2/50{\mu}s$ lightning impulse voltage is applied. The laboratory experiments, for this study, were carried out based on factors affecting the transient behavior in soils. The electrical breakdown in soils was measured over a 0-6% range of moisture content for sands and a 0-4% range of moisture content for gravels. Needle-plane electrode systems was used As a result, the conduction current prior to ionization growth in dry soil is a little, but it in wet soil is increased with the applied voltage because the wet soil particles act as conductors. The soil impedance curves show an abrupt reduction just after breakdown. The general tendency measured in different soils is that the higher the water content, the lower the breakdown voltage and the shorter the time-lag to breakdown.