• Title/Summary/Keyword: 1-phase excitation

Search Result 153, Processing Time 0.038 seconds

Vibration and Noise Characteristics of SRM with Hybrid Excitation (하이브리드 여자방식 SRM의 진동.소음 저감 특성)

  • Kim, C.S.;Moon, J.W.;Oh, S.G.;Ahn, J.W.;Hwang, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.638-640
    • /
    • 2000
  • The main source of vibration in SRM drive is generated by rapid change of radial force when phase current is extinguished by commutation action. In this paper a hybrid excitation method is proposed to reduce vibration and acoustic noise of SRM. The hybrid excitation has 2-phase excitation by long dwell angle as well as conventional 1-phase excitation. The vibration and acoustic noise are reduced because the scheme reduces abrupt change of excitation level by distributed and balanced excitation.

  • PDF

Driving Characteristics of Encoder for High Performance Excitation Control of SRM (SRM의 고정도 여자 제어를 위한 엔코더의 운전특성)

  • Kang Yu-Jung;Ahn Jin-Woo;Park Sung-Jun;Kim Cheul-U
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.1-4
    • /
    • 2001
  • SRM(Switched Reluctance Motor) uses reluctance torque by pulse excitation control. SRM drives are much studied in electrical vehicles and industrial application due to the simple, robust mechanical structure and high speed characteristics. For the high performance control of SRM, it is necessary to synchronize the stator phase excitation with the rotor position. This paper proposes a new encoder for high performance excitation control of SRM. The proposed encoder has complex structures of incremental and absolute encoder. An each phase inductance profile can be synchronized with 4-bit absolute position signal and incremental pulses are used for speed detection. Low cost and simple manufacturing of SRM encoder is possible.

  • PDF

Phase Change for One to One Resonance of Nonlinear Cantilever Beam (비선형 외팔보의 일대일 공진에서의 위상변화)

  • Pak, Chul-Hui;Cho, Chong-Du;Cho, Ki-Cheol;Kim, Myoung-Gu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.48-54
    • /
    • 2007
  • The cantilever beam with nonlinearity has many dynamic characteristics of nonlinear vibration. Nonlinear terms of a flexible cantilever beam include inertia, spring, damping, and warping. When the beam is given basic harmonic excitation, it shows planar and nonplanar vibrations due to one-to-one resonance. And when the one-to-one resonance occurs, the flexible beam shows different behaviors in those vibrations. For the one-to-one resonance occurring in each mode, the phase value of the planar vibration is different from that of the nonlinear vibration. This paper investigates the phase change and the phase difference between such planar and nonplanar vibrations which are caused by one-to-one resonance.

Development of the Triple Modular Redundant Excitation System with Simulator for 500MW Synchronous Generator (500MW 동기발전기용 시뮬레이터 탑재형 디지털 삼중화 여자시스템 개발)

  • Ryu, Hoseon;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.70-75
    • /
    • 2014
  • TMR(triple modular redundant) digital excitation system with simulator is developed for tuning optimal control parameters during commissioning test and coping with system faults rapidly. A new system which mocks up virtual generator, turbine, grid can simulate as if excitation system is connected to a real generator system by setting four switches. The maintenance crew using the simulator is able to test perfectly the phase controller rectifiers, field breaker, sequence relays as well as TMR controller of the excitation system. Commissioning and performance results about the excitation system with simulator is discussed. The trial product was installed and operated at a 500MW thermal power plant after the commissioning test.

Estimation of Excitation Force and Noise of Drum Washing Machine at Dehydration Condition using Phase Reference Spectrum (위상 기준 스펙트럼을 이용한 드럼 세탁기 탈수 행정시의 가진력 및 방사소음 예측)

  • Kim, Tae Hyeong;Jung, Byung Kyoo;Heo, So Jung;Jeong, Weui Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.617-623
    • /
    • 2013
  • Accurate prediction of the radiated noise is important to reduce the noise of the washing machine. It is also necessary to predict the excitation force accurately because excitation force can induce noise. In order to predict the excitation force acting on the washing machine, this paper conducts source identification method by use of phase reference spectrum. In this method, the transfer function between the cabinet and the motor through FEM and the measured response from the surface of the cabinet is used. The analysis of the radiation noise from the identified exciting force has been investigated. The comparison between the predicted SPL and the measured SPL at 1m apart from the front side of the washing machine showed good tendency.

The effects of tube bundle geometry on vibration in two-phase cross-flow (2상 횡유동에서 열교환기 관군 배치에 다른 진동특성 고찰)

  • 김범식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.681-687
    • /
    • 2001
  • Two-phase cross-flow exists in many shell-tube heat exchangers such as steam generators, condensers and reboilers. An understanding of flow-induced vibration excitation mechanism is necessary to avoid problems due to excessive tube vibration. This paper presents the results of a series of experiments done on tube bundles of different geometries subjected to two-phase cross-flow simulated by air-water mixtures. Normal(30$^{\circ}$) and rotated (60$^{\circ}$)triangular, and normal(90$^{\circ}$) and rotated (45$^{\circ}$) square tube bundle configurations of pitch-to-diameter ratio of 1.2 to 1.5 were tested over a range of mass fluxes from 0 to 1,000kg/$m^2$ㆍ s and void fraction from 0 to 100%. The effects of tube bundle geometry on vibration excitation mechanism such as fluidelastic instability and random turbulence, and on dynamic parameters such as damping and hydrodynamic mass are discussed. A lower pitch-to-diameter results in a higher hydrodynamic mass. The effect of tube bundle configurations on damping and random turbulence excitation is minor. The effect of pitch-to-diameter on the fluidelastic instability, however, is significant.

  • PDF

Study on the Reduction of Vibration, Acoustic Noise of SRM by DC Excitation Commutation Method (SRM의 직류여자 전류방식에 의한 진동, 소음의 저감 대책에 관한 연구)

  • Hwang, Yeong-Mun;Jeong, Tae-Uk;O, Seong-Gyu;Chu, Yeong-Bae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • Switched reluctance motor(SRM) has simple magnetic structure, and requires simple power electronic driving circuit. It is very useful for wide range adjustable speed drive system. But, SRM drive generates large vibration and acoustic noise because it is commutated individually by step pulse m.m.f of each phase pole. In the vibration and acoustic noise characteristics. The considerable vibration and noise is induced by radial deforming of stator, so the frequency of dominant vibration and noise is coincident with the frequency of natural mode frequency of mechanical structure. This radial vibration force is generated in the phase commutation region. This paper suggests the new electromagnetic structure of SRM with auxiliary commutation winding which is excited by direct current. This phase and commutation winding are coupled magnetically between one phase winding and the other. Therefore, the switch-off phase current is absorbed by the another phase winding. By this interaction of phase and commutation winding in commutation mechanism, vibration and noise is reduced. And this reduction effect is examined by the test of prototype machine. As a result, SRM with DC exciting commutation winding is very useful to reduce vibration and acoustic noise.

  • PDF

A Study of phase controlled rectifier design of excitation system for thermal power plant (화력발전소 여자시스템 위상제어 정류기 설계에 관한 연구)

  • Lee, J.H.;Ryu, H.S.;Lim, I.H.;Song, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1015-1017
    • /
    • 2002
  • This is the study on static excitation system of synchronous generator of large capacity in new model, which was developed by KEPRI using triple redundant digital method, associate three bridges of thyristor phase controlled rectifier. This paper will discuss the design conception and the application results of system which includes the power control devices(thyristors, GTO) and power excitation potential transformer. The multi-paralleling thyristor bridge converters of N+1 method have firing circuit. The initial product manufactured by proposed design in the study is in commercial operation, completing installation and commissioning in 400MW Thermal Power Plant. The performance test is done in practical technique.

  • PDF

Combustion Radicals and NOx Emissions Characteristics by Control of Partially Premixed Flames (부분적 예혼합화염제어에 의한 연소 라디칼 및 NOx 배출물 특성)

  • Kim, Tae-Gwon;Jang, Jun-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.561-569
    • /
    • 2002
  • This paper presents an investigation on $C_2$, CH, OH radicals and NOx emissions in partially premixed flames with acoustic excitation. The radicals are visualized by the digital image technique with optical filters and ICCD camera while NOx emissions are determined by a chemiluminescent detection(NOx analyser). The measurements are made in flames with an overall equivalence ratio (${\phi}_o$) 0.5 and a center tube equivalence ratio(${\phi}_c$) varing from 1.1 to 5.0 for a constant fuel flow rate. In the case of excitation, the visual shape of the flame is changed from laminar to turbulent-like flames. Images of $C_2$, CH, and OH radicals resemble those of the flame appearances as the excitation phase is varied, and the radicals generated at the upstream are convected toward the downstream. It is inferred that the flame characteristics is affected by the flow characteristics of air-fuel mixture. In the case of acoustic excitation, OH radicals are much increased relative to unexcitation. From the radicals and flame visualization under acoustic excitation, the reduction of flame length affects the shorter residence time of center tube mixture, and significantly influences the NOx reduction.

A Comparative Study Between Diffusive-thermal and Buoyancy-driven Self-excitations in Laminar Free Jet Flames with Applied DC Electric Fields (직류전기장이 인가된 층류제트화염에서 물질 -열 확산과 부력에 의한 진동비교에 관한 연구)

  • Han, Jong-Kyu;Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Kim, Tae-Hyung;Park, Jong-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.37-47
    • /
    • 2012
  • Experimental study on comparison of diffusive-thermal self-excitation with buoyancy-driven one due to accumulation of partially premixed, preheated mixture in front of edge flame was conducted in horizontally and vertically injected laminar free-jet flames with an applied DC electric field of -10 kV. The application of horizontal injection method with the DC electric field to jet flames was experimentally designed to suppress heat-loss-induced self-excitation and thereby to highlight the definite difference between both diffusive-thermal and buoyancy-driven self-excitations with the same order of O(1.0 Hz), in that diffusive-thermal self-excitation has not been so far found experimentally in laminar jet flames. Flame stability maps in vertically and horizontally injected jet flames are presented. The distinct modes of individual self-excitation are shown to be well described by their own phase diagrams. The results show that buoyancy-driven self-excitation due to the accumulation of partially premixed, preheated mixtures in front of edge flame is branched from the buoyancy-induced self-excitation with O(10 Hz) due to a flame flicker. Once the buoyancy-driven self-excitation appears, it suppresses buoyancy-induced as well as diffusive-thermal self-excitation. The key characteristics for individual self-excitation are discussed and their functional dependencies of Strouhal number upon related physical parameters are also presented.