• 제목/요약/키워드: 1-mm stress

검색결과 1,110건 처리시간 0.025초

교정용 미니스크류 식립 시 스크류의 길이, 직경 및 피질골 두께에 따른 응력 분포에 관한 3차원 유한요소법적 연구 (Three dimensional finite element method for stress distribution on the length and diameter of orthodontic miniscrew and cortical bone thickness)

  • 임종원;김왕식;김일규;손충렬;변효인
    • 대한치과교정학회지
    • /
    • 제33권1호
    • /
    • pp.11-20
    • /
    • 2003
  • 본 연구는 교정치료 시 고정원 보강을 위해 사용되는 교정용 미니스크류의 길이, 직경 및 피질골 두께에 따른 응력 분포 양상을 알아보기 위하여 시행되었다. 미니스크류의 길이와 직경 변화에 따른 응력 분포 양상을 관찰하기 위하여 식립되는 피질골의 두께를 1.0mm로 고정하고 미니스크류의 길이를 6.0mm, 8.0mm, 10.0mm, 12.0mm로, 직경을 1.2mm, 1.6mm, 2.0mm인 3차원 유한요소 모델을 제작하였다. 또한, 피질골의 두께 변화에 따른 응력 분포 양상을 관찰하기 위하여 미니 스크류의 길이를 8.0mm로 고정하고 직경은 1.2mm, 1.6mm, 2.0mm로, 피 질골의 두께는 1.0mm, 1.5mm, 2.0mm, 2.5mm인 3차원 유한요소 모델을 제작하였다. 각각의 유한요소 모델의 미니스크류 head중심에 200gm의 수평력을 가하여 응력 분포 양상과 크기를 3차원 유한요소 해석 프로그램인 ANSYS를 이용하여 비교한 결과 다음과 같은 결론을 얻었다. 1. 미니스크류 내부에서 나타나는 최대 응력값을 비교한 결과, 미니스크류의 직경이 1.2mm에서 2.0mm로 증가할수록 응력이 감소하였으며 같은 직경에서는 길이 증가에 상관없이 일정한 값을 유지하였다. 2. 피질골 및 해면골에 작용되는 최대 응력값을 비교한 결과, 미니스크류의 직경이 1.2mm에서 2.0mm로 증가할수록 응력이 감소하였으며 같은 직경에서는 길이 증가에 상관없이 일정한 값을 유지하였다. 3. 피질골 및 해면골에 작용되는 응력 분포를 관찰한 결과, 대부분의 응력이 피질골에서 흡수되었으며 ,해면골에 전달되는 응력값은 미미하였다. 4. 피질골 두께에 따른 최대 응력값을 비교한 결과, 같은 미니스크류의 직경에서는 피질골의 두께 증가에 상관없이 일정한 값을 유지하였다. 이상의 결과는 교정용 미니스크류의 유지에 길이보다는 직경이 더 크게 관여하는 것으로 나타나 미니스크류의 식립시 이에 대한 고려가 필요함을 시사하였다.

다공질 치과용 임플란트 설계를 위한 육각가공체의 역학 분석 (Mechanical Analysis of Hexagonal Porous Body for Porous Dental Implant)

  • 김남식
    • 대한치과기공학회지
    • /
    • 제33권4호
    • /
    • pp.307-312
    • /
    • 2011
  • Purpose: The purpose of this study is a porous cube mechanical analysis for the dental implant. Methods: The porous cube with a side length of 10mm was designed for dental implant. To choose proper design, porous hexagon with a side 10mm which was drilled as a regular hexagon with diameter 0.8mm, 1.0mm, 1.2mm and a side 0.4mm, 0.5mm, 0.6mm each using Computer AUTO CAD(Autodesk, 2008). Each cube was carried out in the mechanical analysis. Results: The result of mechanical analysis was observed that the H0.8 was minimum stress 0.045068MPa, maximum stress 9.4565MPa and minimum strain $0.00389{\times}10^{-4}Mpa$, maximum strain $0.816{\times}10^{-4}Mpa$, the H1.0 minimum stress 0.001147MPa, maximum stress 9.099MPa and minimum strain $0.000099{\times}10^{-4}Mpa$, the maximum strain $0.784{\times}10^{-4}Mpa$, the H1.2 minimum stress 0.099393MPa, maximum stress 13.137MPa and minimum strain $0.0112{\times}10^{-4}Mpa$, maximum strain $1.13{\times}10^{-4}Mpa$. Conclusion: The mechanical analysis of porous hexahedron was that H1.0 is the best result. It will be applicable to the porous implants.

고온상태에서 Al 7075 합금의 크리이프 파단수명 예측에 대한 연구 (A study on the Creep fracture life prediction of Al7075 alloy under high temperature)

  • 강대민;구양;백남주
    • 한국안전학회지
    • /
    • 제3권2호
    • /
    • pp.35-48
    • /
    • 1988
  • Modern technological progress demands the use of materials at high temperature and high pressure. One of the most critical factors in considering such applications - perhaps the most critical one - is creep behavior. In this study the stress exponents n were determined during creep over the temperature range of $90^{\circ}C\;to\;500^{\circ}C$ (0.4 - 0.85 Tm) and stress range of 0.64 kgt/$mm^2$ in order to investigate the creep hehavior. The stress dependence of rapture time (n') were determined over the temperature range of $200^{\circ}C\;to\;240^{\circ}C$ and stress range of 8.13 kgt/$mm^2$ to 9.55 kgt/$mm^2$ in order to investigate to creep rupture property. And the stress transient dip tests were also carried out for the internal stress ${\sigma}i$ over the temperature range of $90^{\circ}C\;to\;500^{\circ}C$ and stress range of 0.64kgt/$mm^2$ to 17.2 kgt/$mm^2$. The creep tests for constant temperature and stress transient dip tests were conducted in air with Al 7075 alloy under constant tensile load. At around the temperature range $200^[\circ}C\;-\;230^{\circ}C$ and the stress level 8.13 - 9.55 (kgt/$mm^2$), the temperature range $280^{\circ}C\;-\;310^{\circ}C$ and the stress level 1.85 - 2.55 (kgt/$mm^2$), the temperature range $380^{\circ}C\;-\;410^{\circ}C$ and the stress 1.53 - 0.91 (kgt/$mm^2$), the stress exponent in had the value of 6.2 - 6.65 but at around the temperature range $90^{\circ}C\;-\;120^{\circ}C$ and the stress level 10 - 17.2(kgt/$mm^2$), the value of 1.3, and at around the temperature range $470^{\circ}C\;-\;500^{\circ}C$, the stress level 0.62 - 1.02 (kgt/$mm^2$) the value of 1-1. Besides these results, at around the temperature $200^{\circ}C\;-\;240^{\circ}C$ the stress dependence of rupture time (n') had the value of 6.3. Finally, it was found that the value n calculated by considering the applied stress dependence of the internal stress were in good agreement with those obtained for the creep test. Then, it was concluded that the change in n was mainly attributed to the difference of the applied stress dependence of the internal stress and the ratio of the internal stress to the applied stress, and the creep rupture life may be represented as.

  • PDF

임프란트 매식시 해면골질의 차이에 따른 치밀골 상 응력분석 (The FEM Analysis on the Crestal Cortical Bone around the Implant according to the Cancellous Bone Density and Loading Positions)

  • 정신영;김창현
    • 구강회복응용과학지
    • /
    • 제23권1호
    • /
    • pp.69-78
    • /
    • 2007
  • This study was performed to compare the stress distribution pattern in the crestal cortical bone and cancellous bone using 3-dimensional finite element stress analysis when 2 different Young's modulus(high modulus, model 1; low modulus, model 2) of cancellous bone was assumed. For the analysis, a finite element model was designed to have two square-threaded implants fused together and located at first and second molar area. Stress distribution was observed when vertical load of 200N was applied at several points on the occlusal surfaces of the implants, including central fossa, points 1.5mm, 2mm, 3mm and 3.5mm buccally away from central fossa. The results were as follows; 1. In both model, the maximum Von-Mises stress in the crestal cortical bone was greater when the load was applied at the central point, points 1.5mm and 2mm buccally away from central fossa than other cases. 2. In the cortical bone around first and second molar, model 2 showed greater Von-Mises stress than model 1. It is concluded that when the occlusal contact is afforded, the distribution of stress varies depending on the density of cancellous bone and the location of loading. More favorable stress distribution is expected when the contact load is applied within the diameter of fixtures.

Segmented TMA T-loop spring에 의한 견치 후방이동시의 응력분포에 관한 광탄성법적 분석 (A photoelastic study of the stress distribution on canine retraction by segmented TMA T-loop spring)

  • 윤영주;김광원;유필식
    • 대한치과교정학회지
    • /
    • 제31권2호통권85호
    • /
    • pp.199-207
    • /
    • 2001
  • 본 연구는 교정치료를 시행함에 있어 전치부 crowding을 해결하기 위한 견치의 단독견인 방법중 새로운 segmented TMA T-loop spring으로 견치 후방견인시 치근단과 그 주위 치조골에서의 응력상태를 알아보기 위해 시행되었다. PL-3 epoxy resin으로 광탄성 모형을 제작하여 B/L ratio가 0.25, 0.5, 0.75인 위치로 T-loop을 위치시키고 각 위치에서 5mm, 3mm, 1mm activation하였다. 이후 광탄성 응력 해석장치를 이용하여 견치견인시 치근단과 그 주위 치조골에서의 초기 응력 상태를 광탄성법으로 분석한 바, 다음과 같은 결론을 얻었다. 1. T-looP 위치에 상관없이 activation량이 감소할수록 상악 1소구치 발치부위에 응력이 감소하였고 상악 1대구치의 함입응력은 증가하였다. 2. 5mm activation시 T-loop위치가 구치부쪽으로 이동할수록 상악 1소구치 발치부위에 응력이 증가하였다. 3. 3mm activation시 T-loop위치가 구치부쪽으로 이동할수록 상악 1소구치 발치부위와 상악 1대구치 협측 근심치근 근심면하방 1/2부위에 응력이 증가하였다. 4. 1mm activation시 T-loop위치가 견치쪽으로 이동할수록 상악 견치의 근심치근면 상방과 치근첨 하방의 응력이 증가하였다. 5. B/L ratio가 0.25이고 3mm activation시 상악견치의 치체이동이 나타났다. 이상의 결과를 종합해볼 때 segmented T-loop spring의 근, 원심 위치 와 activation량을 조절하여 원하는 치아이동과 고정원 조절이 가능하다고 사료된다.

  • PDF

VCTFK의 반복피로에 의한 소손 패턴의 특성 해석 (The Characteristics Analysis of Damaged Pattern by Repeated Stress of VCTFK)

  • 최충석;송길목;김동우
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.42-47
    • /
    • 2004
  • In this paper, we analyzed on the characteristics of the stranded wire disconnected by repeated stress. The stranded wires that were used in the experiment are PVC insulated flexible cords(VCTFK: Vinyl Insulated Vinyl Cabtyre Cord Flat-type) of $0.75mm^2,\;1.25mm^2,\;and\;2.0mm^2$. They are used to connect the load in low voltage. The stranded wires disconnected by repeated stress were magnified with optical microscope. Using X-ray, the disconnected wire were photo-graphed. we compared mechanical characteristics of the stranded wire between disconnected tendency and allowable current. On the mechanical strength of vinyl cap tire ellipse type cords under bending stress, VCTFK of $1.25mm^2$ was the strongest of them. When it was bent $826.3\pm7$ times, it appeared the disconnected tendency that element wires of VCTFK of $1.25mm^2$ are more about 1.67 times than element wires of VCTFK of $0.75mm^2$. In mechanical strength, VCTFK of $1.25mm^2$ is higher about 1.7 times than VCTFK of $0.75mm^2$. Therefore, we found out that mechanical strength was higher, when the wire had a lot of element wires. In comparison with bending stress, VCTFK of $1.25mm^2$ is the strongest among samples, and it is the most useful in wires of movable type.

구부림 피로에 의한 연선의 반단선 특성 해석 (Analysis on the Characteristics of the Stranded Wire Disconnected by Bending Stress)

  • 송길목;최충석;김동우;곽희로
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.464-467
    • /
    • 2003
  • In this paper, we analyzed on the characteristics of the stranded wire disconnected by bending stress. The stranded wire that used in the experiment are PVC insulated flexible cords(VCTFK) of $0.75mm^2,\;1.25mm^2,\;and\;2.0mm^2$. They are used to connect the load in low voltage. The stranded wires disconnected by bending stress were magnified with optical microscope. Using X-ray, the disconnected wire were photographed. we compared mechanical characteristics of the stranded wire between disconnected tendency and allowable current. On the mechanical strength of vinyl captyre ellipse type cords under bending stress, $1.25mm^2$ VCTFK was the strongest of them. When it was bended $826.3{\pm}7\;times$, it appeared the disconnected tendency that element wires of $1.25mm^2$ VCTFK are more about 1.67 times than element wires of $0.75mm^2$ VCTFK. In mechanical strength, $1.25mm^2$ VCTFK is higher about 1.7 times than $0.75mm^2$ VCTFK. Therefore, we found out that mechanical strength will be higher, if element wire is a lot. In comparison with bending stress, $1.25mm^2$ VCTFK is the strongest among samples, and then it is the most useful in wires of movable type.

  • PDF

탄소섬유 FRP판과 현장타설 고인성섬유보강콘크리트 사이의 단순 부착슬립 관계 (Simple Bond Stress and Slip Relationship between CFRP Plank and Cast-in-Place DFRCC)

  • 유준상;유승운
    • 복합신소재구조학회 논문집
    • /
    • 제7권1호
    • /
    • pp.25-31
    • /
    • 2016
  • Bond stress between cast-in-place ductile fiber reinforced cementitious composites and CFRP plank were experimentally analyzed. As failure shape, the mixture of failure between CFRP plank and epoxy, and failure between concrete and epoxy was shown. In case of RFCON from the suggested simple bond slip relationship, the maximum average bond stress was 5.39MPa, the initial slope was 104.09MPa/mm, and the total slip length was 0.19mm. PPCON showed the maximum average bond stress of 4.31MPa, the initial slope of 126.67MPa/mm, and the total slip length of 0.26mm, while RFCON+ appeared to have 8.71MPa, 137.69MPa/mm, 0.16mm. PPCON+ had 6.19MPa maximum average bond stress, 121.56MPa/mm initial slope, and 0.34mm total slip length. To comprehend the behavior of composite structure of FRP and concrete, local bond slip relation is necessary, and thus a simple relation is suggested to be easily applied on hybrid composite system.

1mm 응력 기법을 적용한 EH 강재 필릿 용접 이음부 피로 강도 평가 (A Study of Assessment for Fatigue Strength of EH Steels at Fillet Welded Joints using 1mm Stress Method)

  • 신문걸;오동진;김영남;김명현
    • 대한조선학회논문집
    • /
    • 제51권1호
    • /
    • pp.26-33
    • /
    • 2014
  • In this study, Non-load-carrying EH Grade steels in fillet welded joints were evaluated with both the hot spot stress method and the 1mm stress method. The thickness effect criterion for fatigue strength evaluation of welded of welded steel structures recommendations of the IIW was used to evaluate the fatigue strength of EH40 and EH36 and Both EH40 and EH36 have been compared with FAT 125 curve recommended in the IIW. Furthermore, fatigue strength of the welded tow and the ground conditions for Non-load-carrying EH36 based on the 1mm stress method has been discussed.

상이(霜異)한 Ceramometal System에 있어서 Nickel-Chromium합금과 도재(陶材)와의 결합강도(結合强度)에 관(關)한 비교실험연구(比較實驗硏究) (A Study of Bond Strength of Nickel-Chromium Alloys with Porcelain in Ceramometal System)

  • 김치영
    • 대한치과기공학회지
    • /
    • 제7권1호
    • /
    • pp.19-25
    • /
    • 1985
  • In oder to compare and measure bond strength of ceramometal system with use of ceramco porcelain powder including SnO2 and uni metal, Rexillium III, Vera Bond as non precious alloys manufactured for porecelain-metal restorations. Total 24 test sample were constructed. All Test sample were measured with a Mitutoyo micrometer graduated to 0.01mm. It is as follows measured of thickness 3.3mm(metal : 1.1mm, porcelain: 2.2mm), width 12mm, length 30mm(porcelain 12mm x 12mm), Compared maximum bending stress test. The results obtained were as follows: 1. Bond strength of each metal with ceramco porcelain powder showed statistical significance.(P<0.05) 2. Vera Bond and uni metal, uni metal and Rexillium III revealed no statistical Significance.(P>0.05) Vera Bond and Rexillium III showed statistical significance.(P<0.05) 3. The order of maximum bending stress was Rexillium III, uni metal, vera Bond. The order of bond strength ratio making bending stress was Vera bond, uni metal, Rexillium III.

  • PDF