• Title/Summary/Keyword: 1-methyl-1-phenylhydrazine

Search Result 4, Processing Time 0.019 seconds

Synthesis of 6-Alkyl-3-Chromonealdehyde(2,2-dialkyl)hydrazone Derivatives for Green Light Emitting Materials (녹색발광 6-알킬-3-크로몬알데히드(2,2-디알킬)하이드라존 유도체의 합성)

  • Chung, Pyung-Jin;Chang, Hong-Joon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.424-429
    • /
    • 2010
  • 6-Alkyl-3-chromonealdehyde (2,2-dialkyl)hydrazone derivatives were synthesized by dehydration condensation. They are green-emitting materials for organic light emitting device (OLED) composed of electron acceptor of 6-alkyl-3-chromonealdehydes and electron donor of 2,2-dialkylhydrazones in a conjugated structure. The structural properties of reaction products were analyzed by FT-IR and $^1H$-NMR spectroscopy. The thermal stabilities and reactivities were measured by melting points and yields. The UV-visibles and PL properties were also determined by excitation spectra and emission spectra, respectively.

Synthesis of Blue Emission Hydrazone Derivatives for Organic Electroluminescence (유기 EL용 청색 발광 히드라존 유도체의 합성)

  • Chung, Pyung-Jin;Lim, Hoi-Deuk
    • Korean Journal of Materials Research
    • /
    • v.13 no.8
    • /
    • pp.514-518
    • /
    • 2003
  • As a fundamental study on organic electroluminescence(EL), blue emitting materials were synthesized and characterized. Individual blue colored hydrazone derivatives were synthesized from the reaction of aldehydes (phthalaldehyde, isophthalaldehyde) with the corresponding amnios (1-methyl -1-phenylhydrazine, 1,1-diphenylhydrazine hydrochloride). Recrystallization of hydrazones from chloroform revealed the melting temperature within $142∼156^{\circ}C$. Photoluminescence(PL) analysis on each hydrazone showed that emission range were blue(458∼478 nm). The structure of obtained hydrazones were elucidated by FT-IR, $^1$H-NMR and C, H, N elemental analyzer.

Synthesis of 3-Chromonealdehyde(2,2-disubstituted)hydrazone Derivatives for Green Light Emitting Materials (녹색발광 3-크로몬알데히드(2,2-이치환)하이드라존 유도체의 합성)

  • Chung, Pyung Jin;Chang, Hong Joon
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.670-674
    • /
    • 2009
  • 3-Chromonealdehyde(2,2-disubstituted)hydrazone derivatives were synthesized by dehydration condensation. They are green-emitting materials for organic light emitting device (OLED) composed of electron acceptor of 3-chromonealdehydes and electron donor of 2,2-disubstituted hydrazones by a conjugated structure. The structural properties of reaction products were analyzed FT-IR and $^1H-NMR$ spectroscopy. The thermal stabilities and reactivities were measured by melting points and yields. The UV-visibles and PL properties can be determined by excitation spectra and emission spectra, respectively.

Characterization of Thermostable Tyrosine Phenol-Lyase from an Obligatory Symbiotic Thermophile, Symbiobacterium sp. SC-1

  • Lee, Seung-Goo;Hong, Seung-Pyo;Kwak, Mi-Sun;Esaki, Nobuyoshi;Sung, Moon-Hee
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.480-485
    • /
    • 1999
  • Tyrosine phenol-lyase of thermophilic Symbiobacterium sp. SC-1, which is obligately and symbiotically dependent on thermophilic Bacillus sp. SK-1, was purified and characterized. The enzyme is composed of four identical subunits and contains approximately 1 mol of pyridoxal 5'-phosphate (PLP) per mol subunit as a cofactor. The enzyme showed absorption maxima at 330 and 420 nm, and lost this absorption profile by treatment with phenylhydrazine. The apparent dissociation constsnt, $K'_D$, for PLP was determined with the apoenzyme to be about $1.2\;{\mu}M$. The isoelectric point was 4.9. The optimal temperature and pH for the $\alpha,\beta$-elimination of L-tyrosine were found to be $80^{\circ}C$ and pH 8.0, respectively. The substrate specificity of the enzyme was very broad: L-amino acids including L-tyrosine, 3,4-dihydroxyphenyl-L-alanine (L-DOPA), L-cysteine, L-serine, S-methyl-L-cysteine, $\beta$-chloro-L-alanine, and S-(o-nitrophenyl)-L-cysteine all served as substrates. D-Tyrosine and D-serine were also decomposed into pyruvic acid and ammonia at rates of 7% and 31% relative to their corresponding L-enantiomers, respectively. D-Alanine, which was inert as a substrate in a, $\beta$-elimination, was the only D-amino acid racemized by the enzyme. The $K_m$ values for L-tyrosine, L-DOPA, S-(o-nitrophenyl)-L-cysteine, $\beta$-chloro-L-alanine, and S-methyl-L-cysteine were 0.19, 9.9, 0.36, 12, and 5.5 mM, respectively.

  • PDF