• Title/Summary/Keyword: 1-hydroxypyrene

Search Result 45, Processing Time 0.025 seconds

URINARY COTININE AND 1-HYDROXYPYRENE-GLUCURONIDE AS BIOMARKERS OF ENVIRONMENTAL TOBACCO SMOKE

  • Lee, Kyoung-Ho;Cho, Soo-Hun;Kwon, Ho-Jang;Hwang, Seung-Sik;Deahee Kang
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.173-173
    • /
    • 2002
  • This study was conducted to compare two biomarkers of environmental tobacco smoke (ETS); urinary cotinine and 1-hydroxypyrene-glucuronide (1-OHPG). Urine samples were collected from 102 junior high school students. Urinary cotinine was determined by GC and urinary 1-OHPG was assayed by synchronous fluorescence spectroscopy (SFS) after immuno-affinity purification using monoclonal antibody 8E11.(omitted)

  • PDF

Urinary 1-Hydroxypyrene Glucuronide Levels in Chinese and Korean Children in Relation to Environmental Pahs Exposure

  • Lee, Kyoung-Ho;Li, Zhong-Min;Yoo, Dong-Ho;Cho, Soo-Hun;Kwon, Ho-Jang;Daehee Kang
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.186-186
    • /
    • 2003
  • The aim of the study was to see if there is any differences in urinary 1-hydroxypyrene glucuronide (1-OHPG) levels in children (9-15 years old) living three cities in South Korea (Seoul, Incheon and Pohang) and three in China (Changchun, Datong and Kunming), where the levels of particulate air pollution varies.(omitted)

  • PDF

Urinary 1-hydroxypyrene glucuronide and genetic polymorphisms of xenobiotic metabolism enzymes in shipbuilding workers using coal tar paint (콜타르가 함유된 페인트 사용 조선업 근로자에서 요중 1-hydroxypyrene glucuronide와 대사효소 유전자 다형성에 관한 연구)

  • 이경호;이정미;최인미;김재용;임형준;이상윤;윤기정;고상백;최홍렬
    • Environmental Mutagens and Carcinogens
    • /
    • v.20 no.1
    • /
    • pp.34-39
    • /
    • 2000
  • Although shipbuilding workers were exposed to a variety of genotoxic compounds including polycyclic aromatic hydrocarbons (PAHs), limited number of studies were conducted to evaluate the biomarkers related to PAH exposure in painting workers in shipbuilding industry. One hundred and thirty three workers including 73 employees using coal tar paints were recruited from a shipbuilding company located in South Korea. Urinary 1-hydroxypyrene glucuronide (1-OHPG), as internal dose of PAH exposure, were measured by synchronous fluorescence spectroscopy after immunoaffinity purification using monoclonal antibody 8E11. Glutathione S-transferase (GST)M1 and GSTT1 genotypes were assessed by multiplex PCR. Information on demographic characteristics, smoking gabit, diet, job title, use of personal protective equipments were collected by self-administered questionnaire. Urinary 1-OHPG were higher in workers using coal tar paints than in workers using general paints, however, the difference was not statistically significant (p=0.20, Mann-Whitney U test). Urinary 1-OHPG levels in smokers were higher than in non-smokers (p<0.05 by Mann-Whitney U test) and there was a significant increase in urinary 1-OHPG levels with the numbers of cigarettes consumed per day (Spearman's correlation coefficient = 0.28, p=0.02). Genetic polymorphisms of GSTM1 and GSTT1 did not influence the level of 1-OHPG in study subjects. Multiple regression analysis show that smoking is the only significant predictor for lon-transformed 1-OHPG (overall model R2=0.1). These results suggest that workers using coal tar paints were exposed to significant amount of PAHs and individual difference in xenobiotic metabolism might affect the levels of internal dose of PAHs.

Biological monitoring of miners exposed to diesel exhaust using urinary 1-hydroxypyrene (디젤 연소물질에 노출된 광산 근로자에서 소변 중 1-hydroxypyrene을 이용한 생물학적 모니터링)

  • Lee, Jong Seong;Choi, Byung-Soon;Shin, Jae-Hoon;Shin, Yong Chul;Kim, Ki-Woong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.2
    • /
    • pp.144-152
    • /
    • 2007
  • Diesel vehicles are a significant source of fine carbon particle emissions including polynuclear aromatic hydrocarbons (PAHs). Urinary 1-hydroxypyrene (1-OHP) is firmly established as a useful biomarker of PAHs uptake in human. To investigate the exposure effect of PAHs in miners according to using diesel truck which was for transportation of ore, we measured urinary 1-OHP as the PAHs exposure biomarker, and analyzed the relationship between urinary 1-OHP concentration and using diesel truck. The study was performed on 118 workers (56 miners in factories using diesel truck, 62 miners in factories non-using diesel truck) and 21 controls. Urine samples were obtained at the end of shift on the survey day. There was no significance in comparison with the mean concentrations on urinary 1-OHP by age, BMI, work duration, smoking, drinking and ventilation type. But significant difference were found among urinary 1-OHP concentrations on factories according to using diesel truck (p=0.000). The urinary 1-OHP mean concentration on underground miners using diesel truck ($0.54{\mu}mol/mol$ creatinine) was higher than those of surface miners using diesel truck ($0.33{\mu}mol/mol$ creatinine, p=0.028), underground miners non-using diesel truck ($0.32{\mu}mol/mol$ creatinine, p=0.001) and controls ($0.22{\mu}mol/mol$ creatinine, p=0.000). In comparison with using status diesel truck, the urinary 1-OHP mean concentration of underground miners using diesel trucks was higher than those of other mine status. The study results would be beneficial to future environmental and biological studies of PAHs exposure to diesel exhaust in mines.

URINARY PAH METABOLITES INFLUENCED BY GENETIC POLYMORPHISMS OF GSTM1 IN HOSPITAL INCINERATING WORKERS

  • Lee, Kyoung-Ho;Cho, Soo-Hun;Park, Inmi;Deahee Kang
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.192-192
    • /
    • 2002
  • Hospital waste incinerating workers are exposed to various pyrolysis products including polycyclic aromatic hydrocarbons (PARs). We evaluated their exposure by assessing urinary 1-hydroxypyrene glucuronide (1-OHPG), as internal dose of PAH exposure. The potential effect of genetic polymorphisms of GSTM1/T1 involved in PAH metabolisms was also investigated.(omitted)

  • PDF

Effects of the Genetic Polymorphisms on Urinary Excretion of 1-Hydroxypyrene and 2-Naphthol (일반인구에서 유전자 다형성이 요중 1-hydroxypyrene 및 2-naphthol의 배설량에 미치는 영향)

  • Hwang Moon-Young;Cho Byung-Mann;Moon Seong-Bae
    • Journal of Environmental Science International
    • /
    • v.14 no.5
    • /
    • pp.499-511
    • /
    • 2005
  • This study was performed to determine the effects of genetic polymorphisms, such as glutathione S-transferase ${\mu}1(GSTM1)$, glutathione S-transferase ${\Theta}1\;(GSTM1)$, glutathione S-transferase ${\pi}l (GSTP1)$, aryl hydrocarbon N-acetyltransferase 2 (NAT2), cytochrome P450 2E1 (CYP2E1), cytochrome P450 1A1 (CYP1A1) on the concentrations of urinary 1-hydroxypyrene (1-OHP) and 2-naphthol in general population with no occupational exposure to polycyclic aromatic hydrocarbons (PAHs). Study subjects were 257 men who visited a health promotion center in Susan. A questionnaire was used to obtain detailed data about age, smoking, drinking, body fat mass, intake of fat etc. Urinary l-OHP and 2-naphthol concentration were analyzed by HPLC system with a fluorescence detector. A multiplex PCR method was used to identify the genotypes for GSTM1 and GSTT1. The polymorphisms of GSTP1, NAT2, CYP1A1 and CYP2E1 were determined by the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method. Urinary 1-OHP concentration was higher in deleted genotype of GSTM1, increased as smoking and alcohol drinking increased. Urinary 2-naphthol concentration was also rely on the age and smoking. Neither genetic polymorphism nor drinking-related factors were significantly related to urinary 2-naphthol concentration. No significant relation was found between physical characteristics and concentrations of urinary PAHs metabolites in the subjects, but the geometric mean of urinary 1-OHP and 2-naphthol was higher in the group with higher value compared to median value. These data suggest that in general population occupationally not exposed to PAHs, urinary concentration of PAHs metabolites is influenced by smoking, alcohol drinking and deleted genotype of GSTM1 in 1-OHP and smoking in 2-naphthol.

Urinary 1-Hydroxypyrene Levels in Workers Exposed to Polycyclic Aromatic Hydrocarbon from Rubber Wood Burning

  • Choosong, Thitiworn;Phakthongsuk, Pitchaya;Tekasakul, Surajit;Tekasakul, Perapong
    • Safety and Health at Work
    • /
    • v.5 no.2
    • /
    • pp.86-90
    • /
    • 2014
  • Background: Urinary 1-hydroxypyrene (1-OHP) was selected as a biomarker of polycyclic aromatic hydrocarbons (PAHs) to explore the accumulation level in the bodies of workers at rubber smoke sheet factories in southern Thailand. Methods: Spot urine samples were taken from four groups of workers from June 2006 to November 2007. The nonexposure or control groups included habitual cigarette smokers and nonsmokers. The other two groups were workers exposed to particle-bound PAHs from rubber wood smoke and they were nonsmokers. All spot urine samples were analyzed for 1-OHP and creatinine levels. Results: The mean${\pm}$standard deviation urinary 1-OHP in the control group of habitual smokers and the nonsmokers was $0.24{\pm}0.16{\mu}mol/mol$ creatinine and not-detected to $0.14{\mu}mol/mol$ creatinine, respectively. In the workers, the 1-OHP levels on workdays had no significant difference from the 1-OHP levels on the days off. The yearly average 1-OHP level was $0.76{\pm}0.41{\mu}mol/mol$ creatinine whereas the average 1-OHP level during 10 consecutive workdays was $1.06{\pm}0.29{\mu}mol/mol$ creatinine (p > 0.05). Conclusion: The urinary 1-OHP levels of workers exposed to PAHs were high. The accumulation of 1-OHP in the body was not clear although the workers had long working hours with few days off during their working experience. Therefore, a regular day off schedule and rotation shift work during high productive RSS should be set for RSS workers.

Preliminary Investigation into Urinary 1-Hydroxypyrene as a Biomarker for Polycyclic Aromatic Hydrocarbons exposure among Charcoal Workers in Ogun and Oyo States, Nigeria

  • Olujimi, O.O.;Ogunseye, O.O.;Oladiran, K.O.;Ajakore, S.D.
    • Safety and Health at Work
    • /
    • v.9 no.4
    • /
    • pp.416-420
    • /
    • 2018
  • Background: Urinary 1-hydroxypyrene (1-OHP) has been widely used as a biomarker of polycyclic aromatic hydrocarbons (PAHs) in occupationally exposed workers. The objective of this study is to investigate the concentration of urinary 1-OHP among charcoal workers as subjects and non-charcoal workers as controls. Methods: Early morning urine samples were collected from 68 persons (25 charcoal workers in Igbo-Ora, 20 charcoal workers in Alabata, and 23 non-charcoal workers) who volunteered to participate in this study. 1-OHP determination in urine samples was carried out using high performance liquid chromatography after hydrolysis. Descriptive and inferential statistics were used for data analysis at p < 0.05. Results: The mean urinary 1-OHP concentration (${\mu}mol/mol$ creatinine) among charcoal workers at Igbo-Ora and Alabata and non-charcoal workers were $2.22{\pm}1.27$, $1.32{\pm}0.65$, and $0.32{\pm}0.26$ (p < 0.01). There existed a relationship between respondent type and 1-OHP concentration. Charcoal workers were 3.14 times more at risk of having 1-OHP concentrations that exceed the American Conference of Governmental Industrial Hygienists guideline of $0.49{\mu}mol/mol$ creatinine than non-charcoal workers (relative risk = 3.14, 95% confidence interval: 1.7-5.8, p < 0.01). Conclusion: Charcoal workers are exposed to PAHs during charcoal production and are at risk of experiencing deleterious effects of PAH exposure. Routine air quality assessment should be carried out in communities where charcoal production takes place. Assessment of urinary 1-OHP concentration and use of personal protective equipment should also be encouraged among charcoal workers.