• 제목/요약/키워드: 1-Phenyl-2-pyrrolidone

검색결과 5건 처리시간 0.026초

Phase Equilibrium of Binary Mixture for the (Carbon Dioxide + 1-Phenyl-2-Pyrrolidone) System at High Pressure

  • Lee, Ho;Jeong, Jong-Dae;Byun, Hun-Soo
    • Korean Chemical Engineering Research
    • /
    • 제56권5호
    • /
    • pp.732-737
    • /
    • 2018
  • Experimental data of phase equilibria are reported for the binary mixture of 1-phenyl-2-pyrrolidone in supercritical carbon dioxide. Phase behavior data was measured in a synthetic method at a temperature ranging from 333.2 to 393.2 K and at pressures up to 97.14 MPa. The solubility of 1-phenyl-2-pyrrolidone in the carbon dioxide + 1-phenyl-2-pyrrolidone system increased as temperature increased at a constant pressure and it exhibited the type-I phase behavior. The experimental data for the binary mixture were correlated with the Peng-Robinson equation of state using mixing rule and the critical properties of 1-phenyl-2-pyrrolidone were predicted with the Joback and Lyderson method.

음이온성 Copoly(1,2,4-benzenetricarboxylate/bis[4-(3-aminophenoxy)phenyl]sulfone/3,3',4,4'-benzophenonetetracarboxylate/1,2,3,4-butanetetracerboxylate) 한외여과막의 투과특성 (Performance of Anion Charged Copoly(1,2,4-benzenetricarboxylate/bis[4-(3-aminophenoxy)phenyl]sulfone/3,3',4,4'-benzophenone tetracar boxylate/1,2,3,4-butanetetracerboxylate) Ultrafiltration Membranes)

  • 전종영
    • 한국산업융합학회 논문집
    • /
    • 제12권4호
    • /
    • pp.193-202
    • /
    • 2009
  • In the preparation of anion charged asymmetric ultrafiltration membranes by the conventional phase inversion method, several variables could be adjusted to control membrane permeations. The anion charged materials and its original polymer have good solubility in N-methyl-2-pyrrolidone. The membranes having a hydrophilic property were less fouled the membrane prepared from the original polymer. The preparation conditions, operation conditions, and hydrophilicity of polymer have played an important role in determining the permeation properties of membranes.

  • PDF

Synthesis and Properties of Novel Flame-Retardant and Thermally Stable Poly(amideimide)s from N,N'-(bicyclo[2,2,2]oct-7-ene-tetracarboxylic)-bis-L-amino Acids and Phosphine Oxide Moiety by Two Different Methods

  • Faghihi, Khalil;Hajibeygi, Mohsen;Shabanian, Meisam
    • Macromolecular Research
    • /
    • 제17권10호
    • /
    • pp.739-745
    • /
    • 2009
  • N,N'-(bicyclo[2,2,2]oct-7-ene-tetracarboxylic)-bis-L-amino acids 3a-g were synthesized by the condensation reaction of bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride 1 with two equimolars of Lalanine 2a, L-valine 2b, L-leucine 2c, L-isoleucine 2d, L-phenyl alanine 2e, L-2-aminobutyric acid 2f and L-histidine 2g in an acetic acid solution. Seven new poly(amide-imide)s PAIs 5a-g were synthesized through the direct polycondensation reaction of seven chiral N,N'-(bicyclo[2,2,2]oct-7-ene-tetracarboxylic)-bis-L-amino acids 3a-g with bis(3-amino phenyl) phenyl phosphine oxide 4 by two different methods: direct polycondensation in a medium consisting of N-methyl-2-pyrrolidone (NMP)/triphenyl phosphite (TPP)/calcium chloride ($CaCl_2$/pyridine (py), and direct polycondensation in a tosyl chloride (TsCl)/pyridine (py)/N,N-dimethylformamide (DMF) system. The polymerization reaction produced a series of flame-retardant and thermally stable poly(amide-imide)s 5a-g with high yield. The resulted polymers were fully characterized by FTIR, $^1H$ NMR spectroscopy, elemental analyses, inherent viscosity, specific rotation and solubility tests. Data obtained by thermal analysis (TGA and DTG) revealed that the good thermal stability of these polymers. These polymers can be potentially utilized in flame retardant thermoplastic materials.

Synthesis and Characterization of Copoly(amide-imide) Derivatives and Ultrafiltration Membrane Performances I - Preparation of Copoly(amide-imide)s by One-step Method -

  • Jeon, Jong-young;Shin, Bong-Seob
    • Korean Membrane Journal
    • /
    • 제3권1호
    • /
    • pp.9-16
    • /
    • 2001
  • The diamide-diamine having carboxylic acid was prepared by direct condensation of 1,2,4-benzenetricarboxylic acid with bits[4- (3-aminophenoxy ) phenyl] sulfone and bits(4-aminouhenyl)-1,4- diisopropylbenzene in medium consisting of triphenylphosphite, LiCl, and N-methyl-2-pyrrolidone. Copoly (amide-imide) derivatives with high molecular weight could be synthesized by one-step polycondensation of prepared diamide-diamine having carboxylic acid and various dianhydride compounds. Depending on the chemical structure and composition of polymer backbones, the viscosities of polymers were found to range between 0.87∼ 1.57 dL/B. All the polymers showed good thermal stability up to 320$\^{C}$ and the 10% weight loss temperature was observed in the range of 450∼540$\^{C}$ in a thermogravimetric traces. The glass transition was recorded in the temperature range of 200 ∼ 270$\^{C}$. All the polymers showed an amorphous nature on a differential scanning calorimetric thermograms. These polymers generally had good mechanical properties and readily soluble in various polar solvents. Further, it was proved that their properties could be determined from the composition.

  • PDF

ITO를 대체한 고효율 유기박막 태양전지 (Replacement of ITO for efficient organic polymer solar cells)

  • 김재령;박진욱;이보현;이표;이종철;문상진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.69.1-69.1
    • /
    • 2010
  • We have fabricated organic photovoltaic cells (OPVs) with highly conductive poly 3,4-ethylenedioxythiophene : poly styrenesulfonate (PEDOT:PSS) layer as an anode without using transparent conducting oxide (TCO), which has been modified by adding some organic solvents like sorbitol (So), dimethyl sulfoxide (DMSO), N-methyl-pyrrolidone (NMP), dimethylformamide (DMF), and ethylene glycol (EG). The conductivity of PEDOT:PSS film modified with each additive was enhanced by three orders of magnitude. According to atomic force microscopy (AFM) study, conductivity enhancement might be related to better connections between the conducting PEDOT chains. TCO-free solar cells with modified PEDOT:PSS layer and the active layer composed of poly(3-hexylthiophene) (P3HT) and phenyl [6,6] C61 butyric acid methyl ester (PCBM) exhibited a comparable device performance to indium tin oxide (ITO) based organic solar cells. The power conversion efficiency (PCE) of the organic solar cells incorporating DMSO, So + DMSO and EG modified PEDOT:PSS layer reached 3.51, 3.64 and 3.77%, respectively, under illumination of AM 1.5 (100mW/$cm^2$).

  • PDF