Synthesis and Properties of Novel Flame-Retardant and Thermally Stable Poly(amideimide)s from N,N'-(bicyclo[2,2,2]oct-7-ene-tetracarboxylic)-bis-L-amino Acids and Phosphine Oxide Moiety by Two Different Methods

  • Faghihi, Khalil (Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Arak University) ;
  • Hajibeygi, Mohsen (Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Arak University) ;
  • Shabanian, Meisam (Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Arak University)
  • Published : 2009.10.25

Abstract

N,N'-(bicyclo[2,2,2]oct-7-ene-tetracarboxylic)-bis-L-amino acids 3a-g were synthesized by the condensation reaction of bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride 1 with two equimolars of Lalanine 2a, L-valine 2b, L-leucine 2c, L-isoleucine 2d, L-phenyl alanine 2e, L-2-aminobutyric acid 2f and L-histidine 2g in an acetic acid solution. Seven new poly(amide-imide)s PAIs 5a-g were synthesized through the direct polycondensation reaction of seven chiral N,N'-(bicyclo[2,2,2]oct-7-ene-tetracarboxylic)-bis-L-amino acids 3a-g with bis(3-amino phenyl) phenyl phosphine oxide 4 by two different methods: direct polycondensation in a medium consisting of N-methyl-2-pyrrolidone (NMP)/triphenyl phosphite (TPP)/calcium chloride ($CaCl_2$/pyridine (py), and direct polycondensation in a tosyl chloride (TsCl)/pyridine (py)/N,N-dimethylformamide (DMF) system. The polymerization reaction produced a series of flame-retardant and thermally stable poly(amide-imide)s 5a-g with high yield. The resulted polymers were fully characterized by FTIR, $^1H$ NMR spectroscopy, elemental analyses, inherent viscosity, specific rotation and solubility tests. Data obtained by thermal analysis (TGA and DTG) revealed that the good thermal stability of these polymers. These polymers can be potentially utilized in flame retardant thermoplastic materials.

Keywords

References

  1. A. Saxena, V. L. Rao, P. V. Prabhakaran, and K. N. Ninan, Eur. Polym. J., 39, 401 (2003) https://doi.org/10.1016/S0014-3057(02)00234-3
  2. G. Bier, Adv. Chem. Ser., 91, 612 (1969) https://doi.org/10.1021/ba-1969-0091.ch040
  3. C. P. Yang, Y. P. Chen, and E. M. Woo, Polymer, 45, 5279 (2004) https://doi.org/10.1016/j.polymer.2004.05.035
  4. A. Boulares, M. Tessier, and E. Marechal, Polymer, 41, 3561 (2000) https://doi.org/10.1016/S0032-3861(99)00526-1
  5. Z. Ge, S. Yang, Z. Tao, J. Liu, and L. Fan, Polymer, 45, 3627 (2004) https://doi.org/10.1016/j.polymer.2004.03.037
  6. D. J. Liaw, P. N. Hsu, W. H. Chen, and S. L. Lin, Macromolecules, 35, 4669 (2002) https://doi.org/10.1021/ma001523u
  7. S. G. Hahm, S. Choi, S. H. Hong, T. J. Lee, S. Park, D. M. Kim, W. S. Kwon, K. Kim, O. Kim, and M. Ree, Adv. Funct. Mater., 18, 3276 (2008) https://doi.org/10.1002/adfm.200800758
  8. S. G. Hahm, S. W. Lee, T. J. Lee, S. A. Cho, B. Chae, Y. M. Jung, S. B. Kim, and M. Ree, J. Phys. Chem. B, 112, 4900 (2008) https://doi.org/10.1021/jp7101868
  9. S. G. Hahm, T. J. Lee, and M. Ree, Adv. Funct. Mater., 17, 1359 (2007) https://doi.org/10.1002/adfm.200600369
  10. S. G. Hahm, T. J. Lee, T. Chang, J. C. Jung, W. C. Zin, and M. Ree, Macromolecules, 39, 5385 (2006) https://doi.org/10.1021/ma060956f
  11. M. Ree, Macromol. Res., 14, 1 (2006) https://doi.org/10.1007/BF03219064
  12. M. Ree, T. J. Shin, and S. W. Lee, Korea Polym. J., 9, 1 (2001)
  13. Kh. Faghihi and M. Hagibeygi, Macromol. Res., 13, 14 (2005) https://doi.org/10.1007/BF03219010
  14. Kh. Faghihi and H. Naghavi, J. Appl. Polym. Sci., 96, 1776 (2005) https://doi.org/10.1002/app.21551
  15. S. Mallakpour and M. Kolahdoozan, J. Appl. Polym. Sci., 104, 1248 (2007) https://doi.org/10.1002/app.25747
  16. H. S. Jin, J. H. Chang, and J. C. Kim, Macromol. Res., 16, 503 (2008) https://doi.org/10.1007/BF03218551
  17. A. S. Mathews, I. Kim, and C. S. Ha, Macromol. Res., 15, 114 (2007) https://doi.org/10.1007/BF03218762
  18. C. H. Jung and Y. M. Lee, Macromol. Res., 16, 555 (2008) https://doi.org/10.1007/BF03218559
  19. C. Nguyen and A. Kim, Macromol. Res., 16, 620 (2008) https://doi.org/10.1007/BF03218570
  20. E. D. Weil, S. V. Levchik, M. Ravey, and W. M. Zhu, Phosphorus. Sulfur. Silicon. Relat. Elem., 146, 17 (1999)
  21. J. Green, J. Fire Sci., 10, 470 (1992) https://doi.org/10.1177/073490419201000602
  22. A. M. Aaronson, Phosphorus flame retardant for a changing world. Phosphorus Chemistry, Developments in American Science, ACS Symposium Series 486, Washington, 1992, ACS, p 218
  23. K. S. Annakutty and K. Kishore, J. Sci. Ind. Res., 48, 479 (1989)
  24. J. Xu, Y. Jiao, B. Zhang, H. Qu, and G. Yang, J. Appl. Polym. Sci., 101, 731 (2006) https://doi.org/10.1002/app.23972
  25. S. C. Yang and J. P. Kim, J. Appl. Polym. Sci., 108, 2297 (2008) https://doi.org/10.1002/app.27646
  26. C. Tian, H. Wang, X. Liu, Z. Ma, H. Guo, and J. Xu, J. Appl. Polym. Sci., 89, 3137 (2003) https://doi.org/10.1002/app.12507
  27. H. Galip, H. Hasipoglu, and G. Gunduz, J. Appl. Polym. Sci., 74, 2906 (1999) https://doi.org/10.1002/1097-4628(19991213)74:12<2906::AID-APP15>3.0.CO;2-3
  28. J. Liu, Y. Gao, F. Wang, and M. Wu, J. Appl. Polym. Sci., 75, 384 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000118)75:3<384::AID-APP7>3.0.CO;2-R
  29. T. Kashiwagi, A. B. Morgan, J. M. Antonucci, M. R. Vanlandingham, R. H. Harris, W. H. Award, and J. R. Shields, J. Appl. Polym. Sci., 89, 2072 (2003) https://doi.org/10.1002/app.12307
  30. Q. Wu, J. Lu, and B. Qu, Polym. Int., 52, 1326 (2003) https://doi.org/10.1002/pi.1115
  31. Z. Y. Wang, Z. Q. Feng, and Q. Liu, J. Appl. Polym. Sci., 105, 3317 (2007) https://doi.org/10.1002/app.26611
  32. M. A. Espinosa, M. Galia, and V. Cadiz, J. Polym. Sci. Part A: Polym. Chem., 42, 3516 (2004) https://doi.org/10.1002/pola.20220
  33. Y. L. Liu, R. J. Jeng, and Y. S. Chiu, J. Polym. Sci. Part A: Polym. Chem., 39, 1716 (2001) https://doi.org/10.1002/pola.1149
  34. L. A. Rusch-Salazar and V. V. Sheares, J. Polym. Sci. Part A: Polym. Chem., 41, 2277 (2003) https://doi.org/10.1002/pola.10745
  35. Kh. Faghihi and Kh. Zamani, J. Appl. Polym. Sci., 101, 4263 (2006) https://doi.org/10.1002/app.23580
  36. Kh. Faghihi, J. Appl. Polym. Sci., 102, 5062 (2006) https://doi.org/10.1002/app.24667
  37. Kh. Faghihi and M. Hajibeygi, J. Appl. Polym. Sci., 92, 3447 (2004) https://doi.org/10.1002/app.20287
  38. L. Ying-Ling, C. Yie-Chan, and C. Tsung-Yu, Polym. Inter., 52, 1256 (2003) https://doi.org/10.1002/pi.1179
  39. Kh. Faghihi, Macromol. Res., 12, 258 (2004) https://doi.org/10.1007/BF03218397
  40. L. Cianga, Eur. Polym. J., 39, 2271 (2003) https://doi.org/10.1016/S0014-3057(03)00140-X
  41. Kh. Fghihi, J. Appl. Polym. Sci., 109, 74 (2008) https://doi.org/10.1002/app.27675
  42. L. Angiolini, T. Benelli, L. Giorgini, and E. Salatelli, Polymer, 46, 2424 (2005) https://doi.org/10.1016/j.polymer.2005.02.023
  43. D. W. Van Krevelen and P. J. Hoftyzer, Properties of Polymer, Elsevier Scientific Publishing Company, New York, 1976