• Title/Summary/Keyword: 1-D flow model

Search Result 884, Processing Time 0.028 seconds

Analysis of LBLOCA of APR1400 with 3D RPV model using TRACE

  • Yunseok Lee;Youngjae Lee;Ae Ju Chung;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1651-1664
    • /
    • 2023
  • It is very difficult to capture the multi-dimensional phenomena such as asymmetric flow and temperature distributions with the one-dimensional (1D) model, obviously, due to its inherent limitation. In order to overcome such a limitation of the 1D representation, many state-of-the-art system codes have equipped a three-dimensional (3D) component for multi-dimensional analysis capability. In this study, a standard multi-dimensional analysis model of APR1400 (Advanced Power Reactor 1400) has been developed using TRACE (TRAC/RELAP Advanced Computational Engine). The entire reactor pressure vessel (RPV) of APR1400 has been modeled using a single 3D component. The fuels in the reactor core have been described with detailed and coarse representations, respectively, to figure out the impact of the fuel description. Using both 3D RPV models, a comparative analysis has been performed postulating a double-ended guillotine break at a cold leg. Based on the results of comparative analysis, it is revealed that both models show no significant difference in general plant behavior and the model with coarse fuel model could be used for faster transient analysis without reactor kinetics coupling. The analysis indicates that the asymmetric temperature and flow distributions are captured during the transient, and such nonuniform distributions contribute to asymmetric quenching behaviors during blowdown and reflood phases. Such asymmetries are directly connected to the figure of merits in the LBLOCA analysis. Therefore, it is recommended to employ a multi-dimensional RPV model with a detailed fuel description for a realistic safety analysis with the consideration of the spatial configuration of the reactor core.

Numerical Simulation of In-Cylinder Flow for the Axi-symmetric Model Engine by Low Reynolds Number k-ε Turbulence Model (저레이놀즈수 k-ε 난류모형에 의한 축대칭 모형기관 실린더내 유동의 수치해석)

  • Kim, W.K.;Choi, Y.D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.38-50
    • /
    • 1994
  • To improve the efficiency of internal combustion engines, it is necessary to understand mixed air-fuel in-cylinder flow processes accurately at intake and compression strokes. There is experimental and numerical methods to analyse in-cylinder flow process. In numerical method, standard $k-{\varepsilon}$ model with wall function was mostly adopted in in-cylinder flow process. But this type model was not efficiently predicted in the near wall region. Therefore in the present study, low Reynolds number $k-{\varepsilon}$ model was adopted near the cylinder wall and standard $k-{\varepsilon}$ model in other region. Also QUICK scheme was used for convective difference scheme. This study takes axisymmetric reciprocating model engine motored at 200rpm with a centrally located valve, incorporated 60 degree seat angie, and flat piston surface excluding inlet port. Because in-cylinder flow processes are undergoing unsteady and compressible, averaged cylinder pressure and inlet velocity at arbitrary crank angle are determined from thermodynamic analytic method and incylinder states at that crank angle are iteratively determined from the numerical analytic method.

  • PDF

Investigation of Aerodynamic Characteristics of a Medium-Size Vehicle (중형 차량의 외부 유동특성에 관한 연구)

  • Lee, D.R.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.22-28
    • /
    • 2006
  • Computer simulation of the air flow over an automotive vehicle is now becoming a routine process in automotive industry to assess the aerodynamic characteristics of a medium-size vehicle such as $C_d\;and\;C_1$ and aslo to investigate the possibility of improving aerodynamic performance of the vehicle as a preliminary design for the production line. Mainly due to its contribution in saving time and cost in the development of new cars, computer simulation of the air flow over a vehicle is usually done well before a production car is introduced to the market and in gaining more and more attention as powerful computer resources are getting readily available nowadays. To aerodynamically design a car is mainly related with reducing a drag coefficient of car. A well designed car usually has a $C_d$ value in the range of $0.3{\sim}0.4$. It is understandable that automotive industry is rushing to reduce a drag coefficient as reducing even a small fraction of the $C_d$ value can have an enormous overall impact on many areas. Actually, the present research model was able to achieve a $C_d$ value in the range of $0.3{\sim}0.36$ for flow velocities of $60km/h{\sim}100km/h$ by strategically removing the possible factor hazardous to lower $C_d$ value. Prediction of the medium-size vehicle aerodynamics using CFD was performed when an actual car model was in the development stage and three-dimensional modeling was also performed to optimize it as the best model in terms of the best aerodynamic performance.

  • PDF

EDISON-CFD를 활용한 대형 트럭 디플렉터 형상에 따른 항력 감소 효과에 관한 연구

  • Park, Sang-Hyeon
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.1-3
    • /
    • 2016
  • 대형 화물 트럭(heavy-duty truck)은 화물 적재에 용이하지만, 공기역학적으로 불리한 형상을 가진다. 이러한 단점을 극복하고자 대형 화물 트럭에는 공기저항력(aerodynamic drag)을 줄일 수 있는 여러 가지 장치가 달려있다. 본 논문에서는 디플렉터(deflector) 형상이 항력 감소에 어떠한 영향을 주며, 평판 형태와 굴곡진 형태의 디플렉터 형상에 대한 항력 계수 비교를 EDISON-CFD를 활용하여 비교하였다. 해석 결과, 측풍(side-wind)의 영향을 무시하며 차량 속도 95 km/h로 등속을 유지하는 조건에서 평판 형태의 Model 1과 바깥으로 굴곡진 Model 2에서 전체 항력 계수가 낮게 나타났다.

  • PDF

NUMERICAL ANALYSIS OF THREE-DIMENSIONAL SUBSONIC TURBULENT CAVITY FLOWS (3차원 아음속 난류 공동 유동에 대한 수치적 연구)

  • Choi, Hong-Il;Kim, Jae-Soo
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • Generally flight vehicles have many cavities such as wheel wells, bomb bays and windows on their external surfaces and the flow around these cavities makes separation, vortex, shock and expansion waves, reattachment and other complex flow phenomenon. The flow around the cavity makes abnormal and three-dimensional noise and vibration even thought the aspect ratio (L/D) is small. The cavity giving large effects to the flow might make large noise, cause structural damage or breakage, harm the aerodynamic performance and stability, or damage the sensitive devices. In this study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa-\omega$ turbulence model. The MPI(Message Passing Interface) parallelized code was used for calculations by PC-cluster. The cavity has the aspect ratios of 2.5, 3.5 and 4.5 with the W/D ratio of 2 for three-dimensional cavities. The Sound Pressure Level (SPL) analysis was done with FFT to check the dominant frequency of the cavity flow. The dominant frequencies were analyzed and compared with the results of Rossiter's formula and Ahuja& Mendoza's experimental datum.

Analysis of Debris Flow Disaster Area according to Location Change of Check Dam using Kanako-2D (Kanako-2D를 이용한 사방댐 위치 변화에 따른 토석류 피해지 분석)

  • Kim, Young Hwan;Jun, Kye-Won
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.128-134
    • /
    • 2018
  • With the increase in frequency of typhoons and heavy rains following the climate change, the scale of damage from the calamities in the mountainous areas has been growing larger and larger, which is different from the past. For the case of Korea where 64% of land is consisted of the mountainous areas, establishment of the check dams has been drastically increased after 2000 in order to reduce the damages from the debris flow. However, due to the lack of data on scale, location and kind of check dams established for reducing the damages in debris flow, the measures to prevent damages based on experience and subjective basis have to be relied on. Under this study, the high-precision DEM data was structured by using the terrestrial LiDAR in the Jecheon area where the debris flow damage occurred in July 2009. And, from the numerical models of the debris flow, Kanako-2D that is available to reflect the erosion and deposition action was applied to install the erosion control facilities (water channel, check dam) and analyzed the effect of reducing the debris flow shown in the downstream.After installing the erosion control facilities, most of debris flow moves along the water channel to reduce the area to expand the debris flow, and after installing the check dam, the flow depth and flux of the debris flow were reduced along with the erosion. However, as a result of analyzing the diffusion area, flow depth, erosion and deposition volume of the debris flow generated from the deposition part after modifying the location of the check dams with the damages occurring on private residences and agricultural land located on the upstream area, the highest reduction effect was shown when the check dam is installed in the maximal discharge points.

Acoustic Field Analysis using 1D Network Model in an Aero Gas Turbine Combustor (1D 네트워크 모델을 이용한 항공용 가스터빈 연소기에서의 음향장 해석)

  • Pyo, Yeongmin;Park, Heeho;Jung, Seungchai;Kim, Daesik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.38-45
    • /
    • 2019
  • The present work suggests a numerical approach using a thermoacoustic network model for the eigenvalue calculation of thermoacoustic instability problems in an aero gas turbine combustor. The model is developed based on the conservation laws for mass, momentum, and energy between acoustic network elements with an area change. Acoustic field in a practical aero gas turbine combustor which has a complicated flow path is analyzed using the current model. The predictive capabilities of the current modeling approach are compared with the acoustic characteristics calculated using Helmholtz solver based on 3D finite element method(FEM).

Comparison of Two-Dimensional Model for Inundation Analysis in Flood Plain Area (홍수시 둔치구간의 수리해석을 위한 2차원 모형 비교)

  • Ku, Young Hun;Kim, Young Do
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.93-102
    • /
    • 2014
  • In the flood plain, river facilities such as sports facilities and ecological park are builded up since the late 2000s. The recent increase of rainfall intensity and flood frequency results in the immersions of parks and river facilities located in the flood plain. Therefore it is necessary to perform the numerical analysis for the extreme rain storm in the flood plain. In this study, to analyze the hydraulic impact by lowering and rising of the water level at flood plain, Both the FaSTMECH, which is a quasi-unsteady flow analysis model to be used for simulating the wet and dry, and the Nays2D, which is unsteady flow analysis model, are used in this study. Also, the flow velocity distribution and the inundation are compared over a period of the typhoon. As a result, the flow velocity distribution at flood plain showed very low values compared to the flow rate in the main channel. This means that the problem of sedimentation is more important than that of erosion in the flood plain.

Groundwaterflow analysis of discontinuous rock mass with probabilistic approach (통계적 접근법에 의한 불연속암반의 지하수 유동해석)

  • 장현익;장근무;이정인
    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.30-38
    • /
    • 1996
  • A two dimensional analysis program for groundwater flow in fractured network was developed to analyze the influence of discontinuity characteristics on groundwater flow. This program involves the generation of discontinuities and also connectivity analysis. The discontinuities were generated by the probabilistic density function(P.D.F.) reflecting the characteristics of discontinuities. And the fracture network model was completed through the connectivity analysis. This program also involves the analysis of groundwater flow through the discontinuity network. The result of numerical experiment shows that the equivalent hydraulic conductivity increased and became closer to isotropic as the density and trace length increased. And hydraulic head decreased along the fracture zone because of much water-flow. The grouting increased the groundwater head around cavern. An analysis of groundwater flow through discontinuity network was performed around underground oil storage cavern which is now under construction. The probabilistic density functions(P.D.F) were obtained from the investigation of the discontinuity trace map. When the anisotropic hydraulic conductivity is used, the flow rate into the cavern was below the acceptable value to maintain the hydraulic containment. But when the isotropic hydraulic conductivity is used, the flow rate was above the acceptable value.

  • PDF

Dynamic O-D Trip estimation Using Real-time Traffic Data in congestion (혼잡 교통류 특성을 반영한 동적 O-D 통행량 예측 모형 개발)

  • Kim Yong-Hoon;Lee Seung-Jae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.1 s.9
    • /
    • pp.1-12
    • /
    • 2006
  • In order to estimate a dynamic origin and destination demand between on and off-ramps in the freeways, a traffic flow theory can be used to calculate a link distribution proportion of traffics moving between them. We have developed a dynamic traffic estimation model based on the three-phase traffic theory (Kerner, 2004), which explains the complexity of traffic phenomena based on phase transitions among free-flow, synchronized flow and moving jam phases, and on their complex nonlinear spatiotemporal features. The developed model explains and estimates traffic congestion in terms of speed breakdown, phase transition and queue propagation. We have estimated the link, on and off-ramp volumes at every time interval by using traffic data collected from vehicle detection systems in Korea freeway sections. The analyzed results show that the developed model describes traffic flows adequately.

  • PDF