• Title/Summary/Keyword: 1-D Modeling

Search Result 1,717, Processing Time 0.028 seconds

Design and Implementation of a Radiative Temperature Measurement System for a Flash Light (섬광의 복사온도 측정 장치의 설계 및 제작)

  • Jin, Jung-Ho;Han, Seungoh;Yang, Hee Won;Park, Seung-Man
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.1
    • /
    • pp.30-37
    • /
    • 2015
  • The design and implementation of a radiative temperature measurement system for a flash light are carried out. Since a massive amount of energy is emitted within a very short time, it is impossible to measure the temperature of a flash with a conventional method. It is also irrelevant to measure one with an optical noncontact method. In this paper, a radiative temperature measurement system using the ratio of spectral radiances over mid- and long-wavelength infrared (IR) is designed and implemented. The implemented system utilizes optical bandpass filters to divide the wavelengths within the mid- and long-wavelength IR ranges, and pyroelectric IR detectors to measure the incident optical power of each wavelength-divided channel. It is shown that the measured radiative temperature of a flash is in the range of 1393 to 1455 K. This temperature-measurement system can be utilized to obtain information about the spectral radiance of a flash as a light source, which is of crucial importance to approaching the modeling and simulation of the various effects of a flash.

Computing turbulent far-wake development behind a wind turbine with and without swirl

  • Hu, Yingying;Parameswaran, Siva;Tan, Jiannan;Dharmarathne, Suranga;Marathe, Neha;Chen, Zixi;Grife, Ronald;Swift, Andrew
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.17-26
    • /
    • 2012
  • Modeling swirling wakes is of considerable interest to wind farm designers. The present work is an attempt to develop a computational tool to understand free, far-wake development behind a single rotating wind turbine. Besides the standard momentum and continuity equations from the boundary layer theory in two dimensions, an additional equation for the conservation of angular momentum is introduced to study axisymmetric swirl effects on wake growth. Turbulence is simulated with two options: the standard ${\kappa}-{\varepsilon}$ model and the Reynolds Stress transport model. A finite volume method is used to discretize the governing equations for mean flow and turbulence quantities. A marching algorithm of expanding grids is employed to enclose the growing far-wake and to solve the equations implicitly at every axial step. Axisymmetric far-wakes with/without swirl are studied at different Reynolds numbers and swirl numbers. Wake characteristics such as wake width, half radius, velocity profiles and pressure profiles are computed. Compared with the results obtained under similar flow conditions using the computational software, FLUENT, this far-wake model shows simplicity with acceptable accuracy, covering large wake regions in far-wake study.

Slope Stability Assessment and Factor Analysis of Surface Mines due to Blasting (발파로 인한 노천광산 사면안정성 평가 및 인자분석)

  • Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.98-107
    • /
    • 2020
  • In surface mining, it is very important to create a mining area for economical mining. This study examined the contribution of design factors on slope stability with different slope design and blasting conditions. The design factors were the properties of the rock, the slope angle and the bench height, and the blasting conditions were reflected at different explosive weight and distances. The safety factor of slope was calculated by shear strength reduction method through 3D modeling, and the contribution rate of rock slope was 94.8%, which is relatively higher than other design factors, slope angle 0.89%, bench height 0.58%, and blasting It is shown that it affects about 3.73%, and it can be seen that blasting at a close distance can affect the stability of the slope.

Prediction for Thickness and Fracture of Stainless Steel-Aluminum-Magnesium Multilayered Sheet during Warm Deep Drawing (온간 딮 드로잉에서 이종금속판재(STS430-Al3004-AZ31)의 파단 및 두께 예측을 위한 연구)

  • Lee, Y.S.;Lee, K.S.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.49-57
    • /
    • 2012
  • It is difficult to estimate the properties of multilayered sheet because they are composed of one or more different materials. Plastic deformation behavior of the multilayered sheet is quite different as compared to each material individually. The deformation behavior of multilayered sheet should be investigated in order to prevent forming defects and to predict the properties of the formed part. In this study, the mechanical properties and formability of stainless steel-aluminum-magnesium multilayered sheet were investigated. The multilayered sheet needs to be deformed at an elevated temperature because of its poor formability at room temperature. Uniaxial tensile tests were performed at various temperatures and strain rates. Fracture patterns changed mainly at a temperature of $200^{\circ}C$. Uniform and total elongation of multilayered sheet increased to values greater than those of each material when deformed at $250^{\circ}C$. The limiting drawing ratio (LDR) was obtained using a circular cup deep drawing test to measure the formability of the multilayered sheet. A maximum value for the LDR of about 2 was achieved at $250^{\circ}C$, which is the appropriate forming temperature for the Mg alloy. Fracture patterns on a circular cup and thickness of formed part were predicted by a rigid-viscoplastic FEM analysis. Two kinds of modeling techniques were used to simulate deep drawing process of multilayered sheet. A single-layer FE-model, which combines the three different layers into a macroscopic single layer, predicted well the thickness distribution of the drawn cup. In contrast, the location and the time of fracture were estimated better with a multi-layer FE model, which used different material properties for each of the three layers.

A Study of the HLA Compliance Testing System and Procedures for ROK (한국형 HLA(High Level Architecture) 적합성 인증시험 체계 및 절차 연구)

  • Jo, Hee-Jin;Lee, Chong-Ho;Kim, Jae-Man
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.1
    • /
    • pp.15-24
    • /
    • 2018
  • High Level Architecture(HLA) for modeling and simulation is an international technical standard to achieve simulation interoperability and reusability. Building federation through the interworking of federates is being used in various fields and is being used in KR(Key Resolve), UFG(Ulchi-Freedom Guardian) as a representative in domestic military. Currently, United States Department of Defense emphasizes the HLA compliance test, which confirms the compliance of Federate by using HLA. However, due to the limitations of testing tools, an HLA compliance test of DoD is not able to perform some of the functional tests on HLA/RTI services such as federation storage/recovery services and also exclude inspection of exchange data between federates. To solve these problems, this paper proposes an HLA compliance testing system of ROK suitable for domestic situations. This will enable effective HLA compliance testing and improve interoperability between federates.

Rotordynamic Model Development with Consideration of Rotor Core Laminations for 2.2 kW-Class Squirrel-Cage Type Induction Motors and Influence Investigation of Bearing Clearance (2.2 kW급 유도전동기의 회전자 적층구조를 고려한 회전체 동역학 해석모델 개발 및 베어링 간극의 영향 분석)

  • Park, Jisu;Sim, Kyuho;Lee, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.158-168
    • /
    • 2019
  • This paper presents the investigation of two types of rotordynamic modeling issues for 2.2 kW-class, rated speed of 1,800 rpm, squirrel-cage type induction motors. These issues include the lamination structure of rotor cores, and the radial clearance of ball bearings that support the shaft of the motor. Firstly, we focus on identifying the effects of rotor core lamination on the rotordynamic analysis via a 2D prediction model. The influence of lamination is considered as the change in the elastic modulus of the rotor core, which is determined by a modification factor ranging from 0 to 1.0. The analysis results show that the unbalanced response of the rotor-bearing system significantly varies depending on the value of the modification factor. Through modal testing of the system, the modification factor of 0.079 is proven to be appropriate to consider the effects of lamination. Next, we investigate the influence of ball bearing clearance on the rotordynamic analysis by establishing a bearing analysis model based on Hertz's contact theory. The analysis results indicate that negative clearance greatly changes the bearing static behavior. Rotordynamic analysis using predicted bearing stiffness with various clearances from -0.005 mm to 0.010 mm reveals that variations in clearance result in a slight difference in the displacement of the system up to 18.18. Thus, considering lamination in rotordynamic analysis is necessary as it can cause serious analysis errors in unbalanced response. However, considering the effect of the bearing clearance is optional because of its relatively weak impact.

A Development of JPEG-LS Platform for Mirco Display Environment in AR/VR Device. (AR/VR 마이크로 디스플레이 환경을 고려한 JPEG-LS 플랫폼 개발)

  • Park, Hyun-Moon;Jang, Young-Jong;Kim, Byung-Soo;Hwang, Tae-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.417-424
    • /
    • 2019
  • This paper presents the design of a JPEG-LS codec for lossless image compression from AR/VR device. The proposed JPEG-LS(: LosSless) codec is mainly composed of a context modeling block, a context update block, a pixel prediction block, a prediction error coding block, a data packetizer block, and a memory block. All operations are organized in a fully pipelined architecture for real time image processing and the LOCO-I compression algorithm using improved 2D approach to compliant with the SBT coding. Compared with a similar study in JPEG-LS, the Block-RAM size of proposed STB-FLC architecture is reduced to 1/3 compact and the parallel design of the predication block could improved the processing speed.

Optimal design of a Linear Active Magnetic Bearing using Halbach magnet array for Magnetic levitation (자기부상용 Halbach 자석 배열을 이용한 선형 능동자기 베어링의 최적설계)

  • Lee, Hakjun;Ahn, Dahoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.792-800
    • /
    • 2021
  • This paper presents a new structure for a linear active magnetic bearing using a Halbach magnet array. The proposed magnetic bearing consisted of a Halbach magnet array, center magnet, and single coil. The proposed linear active magnetic bearing has a high dynamic force compared to the previous study. The high dynamic force could be obtained by varying the thickness of a horizontally magnetized magnet. The new structure of Halbach linear active magnetic bearing has a high dynamic force. Therefore, the proposed linear active magnetic bearing increased the bandwidth of the system. Magnetic modeling and optimal design of the new structure of the Halbach linear active magnetic bearing were performed. The optimal design was executed on the geometric parameters of the proposed linear active magnetic bearing using Sequential Quadratic Programming. The proposed linear active magnetic bearing had a static force of 45.06 N and a Lorentz force constant of 19.54 N/A, which is higher than previous research.

Effect of Various Partial Replacements of Cement with Blast Furnace Slag and Different Placing Times on Thermal Properties of Mass Concrete and Modeling Work (타설시간차에 의한 고로슬래그 미분말의 치환율별 매스콘크리트의 온도특성)

  • Kim, Jong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.207-215
    • /
    • 2019
  • The aim of the research is analyzing the simple adiabatic temperature rising properties and the heat of hydration based on different placing timing of the mass concrete depending on various replacing ratios of blast furnace slag to comparative analyze the thermal cracking index and cracking possibility. As a result from the experiment, a suggested adiabatic temperature rising equation based on various blast furnace slag replacing ratios can be provide favorable correlation with over 0.99 of $R^2$ value by applying the initial induction period. With this relationship, more accurate prediction of the amount of the hydration heat rising and heating timing, and it is known that there is an approximately $13.1^{\circ}C$ of gap between plain concrete without blast furnace slag and concrete with 80 % of replacing blast furnace slag. To control the setting time and heat rising gap, the mix designs between top and bottom concrete casts were changed 15 cases, and D, E, H, I, and L models of controlling the heat of hydration showed 41.23 to $46.88^{\circ}C$ of core temperature and 0.98 to 1.27 of thermal cracking index. Therefore the cracking possibility was 15 to 52 % of favorable results of possibly controlling both the cracking due to the internal and external retainment and concrete temperature at early age.

Structural Relationship among Parent's Play Participation, Young Children's Playfulness, Self-regulation and Happiness (부모의 놀이참여와 유아의 놀이성, 자기조절능력 및 행복감 간의 구조적 관계)

  • Choi, Youseok;Lim, Jiyoung
    • Human Ecology Research
    • /
    • v.59 no.1
    • /
    • pp.71-82
    • /
    • 2021
  • This study examined the structural relationships among parent's play participation, children's playfulness, self-regulation and happiness. In this Study, subjects were 274 children who were 4 through 5 years old. The participants included 274 preschoolers' parents and their teachers in D city. The parents completed questionnaires regarding parent's play participation with their children and children's self-regulation. The teachers completed questionnaires regarding preschoolers' happiness and playfulness. Data was analyzed using descriptive statistics, pearson correlation analysis and mediation analysis based on structural equation modeling with SPSS 25.0 and AMOS 23.0 program. Also, specific indirect effects were analyzed using AMOS user-defined estimand function. The primary results of this study were as follows. 1) The parent's play participation had an influence upon children's playfulness and self-regulation. 2) The children's playfulness had an influence upon children's self-regulation and happiness. 3) The children's self-regulation had an influence upon children's happiness. 4) Between the parent's play participation and children's happiness were mediated by the children's playfulness and self-regulation. This study revealed that parent's play participation, children's playfulness and self-regulation need to be considered simultaneously to explain the level of the children's happiness. The results highlight the structural relationships among parent's play participation, children's playfulness, self-regulation and happiness.