• Title/Summary/Keyword: 1-D Electron density simulation

Search Result 12, Processing Time 0.025 seconds

Molecular Orientation of Intercalants Stabilized in the Interlayer Space of Layered Ceramics: 1-D Electron Density Simulation

  • Yang, Jae-Hun;Pei, Yi-Rong;Piao, Huiyan;Vinu, Ajayan;Choy, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.417-428
    • /
    • 2016
  • In this review, an attempt is made to calculate one-dimensional (1-D) electron density profiles from experimentally determined (00l) XRD intensities and possible structural models as well in an effort to understand the collective intracrystalline structures of intercalant molecules of two-dimensional (2-D) nanohybrids with heterostructures. 2-D ceramics, including layered metal oxides and clays, have received much attention due to their potential applicability as catalysts, electrodes, stabilizing agents, and drug delivery systems. 2-D nanohybrids based on such layered ceramics with various heterostructures have been realized through intercalation reactions. In general, the physico-chemical properties of such 2-D nanohybrids are strongly correlated with their heterostructures, but it is not easy to solve the crystal structures due to their low crystallinity and high anisotropic nature. However, the powder X-ray diffraction (XRD) analysis method is thought to be the most powerful means of understanding the interlayer structures of intercalant molecules. If a proper number of well-developed (00l) XRD peaks are available for such 2-D nanohybrids, the 1-D electron density along the crystallographic c-axis can be calculated via a Fourier transform analysis to obtain structural information about the orientations and arrangements of guest species in the interlayer space.

무거운 이온을 포함하고 있는 플라스마에서 Pseudo-Potential Method와 1d PIC Simulation

  • Choe, Jeong-Rim;Min, Gyeong-Uk;Lee, Dae-Yeong;Ra, Gi-Cheol;Lee, Dong-Ryeol;Yu, Chang-Mo
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.43.4-44
    • /
    • 2009
  • electron, ion, heavy ion으로 구성 된 plasma에서 hump type과 kink type(double layer)의 electrostatic solitary waves이 존재할 수 있다는 것을 pseudopotential method를 이용한 결과와 1d PIC(Particle-In-Cell) simulation method의 결과에서 각각 확인하였다. 1d PIC simulation에서 초기에 각각의 입자 종(species; electron, ion, heavy ion)의 밀도섭동(density perturbation)은 Gaussian 형태로 주었으며, 각각의 입자들의 drift velocity는 각각의 plasma 입자 종들의 thermal velocity로 나란한 방향으로 주었다.

  • PDF

Three-Dimensional Particle-in-cell Simulation of Electron Cyclotron Resonance Plasma with Belt-type Magnet Assembly

  • Lee, Hui Jea;Kim, Seong Bong;Yoo, Suk Jae;Cho, Moohyun;Namkung, Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.242.1-242.1
    • /
    • 2014
  • The electron cyclotron resonance plasma source with a belt-type magnet assembly (BMA) is designed for effective plasma confinements. For characterizing the plasma source, the plasma parameters are measured by Langmuir probe. However, the plasma parameters and the motion of charged particles near the ECR zone are not easy to diagnostics, because of the high plasma density and temperature. Thus, as an alternative method, the electromagnetic simulation of the plasma source has been performed by using three-dimensional particle-in-cell and Monte Carlo collisional (PIC-MCC) simulation codes. For considering the limitation of simulation resources and time, the periodic boundary condition is applied and the coulomb collision is neglected. In this paper, we present the results of 3D PIC simulations of ECR plasmas with BMA and we compare them with the experimental results.

  • PDF

A Density Functional Theory Study of Additives in Electrolytes of a Dye Sensitized Solar Cell

  • Lee, Maeng-Eun;Kang, Moon-Sung;Cho, Kwang-Hwi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2491-2494
    • /
    • 2013
  • The effect of additives in an electrolyte solution on the conversion efficiency of a dye sensitized solar cell was investigated. A density functional theory (DFT) method was used to examine the physical and chemical properties of nitrogen-containing additives adsorbed on a $TiO_2$ surface. Our results show that additives which cause lower partial charges, higher Fermi level shifts, and greater adsorption energies tend to improve the performance of DSSCs. Steric effects that prevent energy losses due to electron recombination were also found to have a positive effect on the conversion efficiency. In this work, 3-amino-5-methylthio-1H-1,2,4-triazole (AMT) has been suggested as a better additive than the most popular additive, TBP, and verified with experiments.

Particle-in-cell simulation feasibility test for analysis of non-collective Thomson scattering as a diagnostic method in ITER

  • Zamenjani, F. Moradi;Asgarian, M. Ali;Mostajaboddavati, M.;Rasouli, C.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.568-574
    • /
    • 2020
  • The feasibility of the particle-in-cell (PIC) method is assessed to simulate the non-collective phenomena like non-collective Thomson scattering (TS). The non-collective TS in the laser-plasma interaction, which is related to the single-particle behavior, is simulated through a 2D relativistic PIC code (XOOPIC). For this simulation, a non-collective TS is emitted from a 50-50 DT plasma with electron density and temperature of ne = 3.00 × 1013 cm-3 and Te = 1000 eV, typical for the edge plasma at ITER measured by ETS system, respectively. The wavelength, intensity, and FWHM of the laser applied in the ETS system are λi,0 = 1.064 × 10-4 cm, Ii = 2.24 × 1017 erg=s·㎠, and 12.00 ns, respectively. The electron density and temperature predicted by the PIC simulation, obtained from the TS scattered wave, are ne,TS = 2.91 × 1013 cm-3 and Te,TS = 1089 eV, respectively, which are in accordance with the input values of the simulated plasma. The obtained results indicate that the ambiguities rising due to the contradiction between the PIC statistical collective mechanism caused by the super-particle concept and the non-collective nature of TS are resolved. The ability and validity to use PIC method to study the non-collective regimes are verified.

Numerical Modeling of Plasma Characteristics of ICP System with a Pulsed dc Bias (수치모델을 이용한 pulsed dc bias ICP장치의 플라즈마 특성 해석)

  • Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.3
    • /
    • pp.154-158
    • /
    • 2010
  • Numerical analysis is done to investigate the effects of pulse bias on the plasma processing characteristics like ion doping and ion nitriding by using fluid dynamic code with a 2D axi-symmetric model. For 10 mTorr of Ar plasma, -1 kV of pulse bias was simulated. Maximum sheath thickness was around 20 mm based on the electric potential profile. The peak electron temperature was about 20 eV, but did not affect the averaged plasma characteristics of the whole chamber. Maximum ion current density incident on the substrate was 200 $A/m^2$ at the center, but was decreased down to 1/10th at radius 100 mm, giving poor radial uniformity.

Dosimetric Evaluation of Synthetic Computed Tomography Technique on Position Variation of Air Cavity in Magnetic Resonance-Guided Radiotherapy

  • Hyeongmin Jin;Hyun Joon An;Eui Kyu Chie;Jong Min Park;Jung-in Kim
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.142-149
    • /
    • 2022
  • Purpose: This study seeks to compare the dosimetric parameters of the bulk electron density (ED) approach and synthetic computed tomography (CT) image in terms of position variation of the air cavity in magnetic resonance-guided radiotherapy (MRgRT) for patients with pancreatic cancer. Methods: This study included nine patients that previously received MRgRT and their simulation CT and magnetic resonance (MR) images were collected. Air cavities were manually delineated on simulation CT and MR images in the treatment planning system for each patient. The synthetic CT images were generated using the deep learning model trained in a prior study. Two more plans with identical beam parameters were recalculated with ED maps that were either manually overridden by the cavities or derived from the synthetic CT. Dose calculation accuracy was explored in terms of dose-volume histogram parameters and gamma analysis. Results: The D95% averages were 48.80 Gy, 48.50 Gy, and 48.23 Gy for the original, manually assigned, and synthetic CT-based dose distributions, respectively. The greatest deviation was observed for one patient, whose D95% to synthetic CT was 1.84 Gy higher than the original plan. Conclusions: The variation of the air cavity position in the gastrointestinal area affects the treatment dose calculation. Synthetic CT-based ED modification would be a significant option for shortening the time-consuming process and improving MRgRT treatment accuracy.

Comparison of Monitor Units Obtained from Measurements and ADAC Planning System for High Energy Electrons (측정과 ADAC 치료계획 시스템에서 계산된 고에너지 전자선의 Monitor Unit Value 비교)

  • Lee, Re-Na;Choi, Jin-Ho;Suh, Hyun-Suk
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.202-208
    • /
    • 2002
  • The purpose of this study is to evaluate the monitor unit obtained from various methods for the treatment of superficial cancers using electron beams. Thirty-three breast cancer patients who were treated in our institution with 6, 9, and 12 MeV electron beams, were selected for this study. For each patient, irregularly shaped treatment blocks were drawn on simulation film and constructed. Using the irregular blocks, monitor units to deliver 100 cGy to the dose maximum (dmax) were calculated from measurement and three-dimensional radiation treatment planning (3D RTP) system (PINNACLE 6.0, ADAC Laboratories, Milpitas CA) Measurements were made in solid water phantom with plane parallel (PP) chamber (Roos, OTW Germany) at 100 cm source-to surface distances. CT data was used to investigate the effect of heterogeneity. Monitor units were calculated by overriding CT values with 1 g/㎤ and in the presence of heterogeneity. The monitor unit values obtained by the above methods were compared. The dose, obtained from measurement in solid water phantom was higher than that of RTP values for irregularly shaped blocks. The maximum differences between monitor unit calculated in flat water phantom at gantry zero position were 4% for 6 MeV and 2% for 9 and 12 MeV electrons. When CT data was used at a various gantry angle the agreement between the TPS data with and without density correction was within 3% for all energies. These results indicate that there are no significant difference in terms of monitor unit when density is corrected for the treatment of breast cancer patients with electrons.

  • PDF

Evaluation of Ultrasonic Multiple Scattering Method to Improve the Accuracy of Fine Dust Measurement (비산먼지 측정 정확도 개선을 위한 시뮬레이션 초음파 다중 산란 알고리즘 검증)

  • Woo, Ukyong;Choi, Hajin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.119-128
    • /
    • 2020
  • An ultrasonic multiple scattering simulation using cross-section of fine dust particles were proposed. These days, along with awareness of air pollution, social interest in fine dust is increasing. In the construction field, awareness of fine dust is increasing, and research on preparing various countermeasures is underway. The light scattering method fine dust meter currently in use is affected by environmental factors such as relative humidity, and reliability problems in terms of accuracy are continuously reported. However, the transmission of ultrasonic waves can directly reflect the physical change of the medium based on the mechanical wave. Using these advantages of ultrasonic waves, fine dust measurement simulation was performed using the scattering cross section and ultrasonic multiple scattering theory. The shape data of the fine dust particles were collected using a SEM (Scanning Electron Microscope), and a cross-section according to the fine dust particles was derived through numerical analysis. As a result of signal processing, the error for the number density corresponding to each cross-section is minimum 19, maximum 3455.

Development of a 3 kW Grid-tied PV Inverter With GaN HEMT Considering Thermal Considerations (GaN HEMT를 적용한 3kW급 계통연계 태양광 인버터의 방열 설계 및 개발)

  • Han, Seok-Gyu;Noh, Yong-Su;Hyon, Byong-Jo;Park, Joon-Sung;Joo, Dongmyoung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.325-333
    • /
    • 2021
  • A 3 kW grid-tied PV inverter with Gallium nitride high-electron mobility transistor (GaN HEMT) for domestic commercialization was developed using boost converter and full-bridge inverter with LCL filter topology. Recently, many GaN HEMTs are manufactured as surface mount packages because of their lower parasitic inductance characteristic than standard TO (transistor outline) packages. A surface mount packaged GaN HEMT releases heat through either top or bottom cooling method. IGOT60R070D1 is selected as a key power semiconductor because it has a top cooling method and fairly low thermal resistances from junction to ambient. Its characteristics allow the design of a 3 kW inverter without forced convection, thereby providing great advantages in terms of easy maintenance and high reliability. 1EDF5673K is selected as a gate driver because its driving current and negative voltage output characteristics are highly optimized for IGOT60R070D1. An LCL filter with passive damping resistor is applied to attenuate the switching frequency harmonics to the grid-tied operation. The designed LCL filter parameters are validated with PSIM simulation. A prototype of 3 kW PV inverter with GaN HEMT is constructed to verify the performance of the power conversion system. It achieved high power density of 614 W/L and peak power efficiency of 99% for the boost converter and inverter.