• 제목/요약/키워드: 1-Aminocyclopropane-1-carboxylic acid

검색결과 42건 처리시간 0.022초

Effect of 1-aminocyclopropane-1-carboxylic acid (ACC)-induced ethylene on cellulose synthase A (CesA) genes in flax (Linum usitatissimum L. 'Nike') seedlings

  • Lim, Hansol;Paek, Seung-Ho;Oh, Seung-Eun
    • Genes and Genomics
    • /
    • 제40권11호
    • /
    • pp.1237-1248
    • /
    • 2018
  • Introduction Cellulose microfibril is a major cell wall polymer that plays an important role in the growth and development of plants. The gene cellulose synthase A (CesA), encoding cellulose synthases, is involved in the synthesis of cellulose microfibrils. However, the regulatory mechanism of CesA gene expression is not well understood, especially during the early developmental stages. Objective To identify factor(s) that regulate the expression of CesA genes and ultimately control seedling growth and development. Methods The presence of cis-elements in the promoter region of the eight CesA genes identified in flax (Linum usitatissimum L. 'Nike') seedlings was verified, and three kinds of ethylene-responsive cis-elements were identified in the promoters. Therefore, the effect of ethylene on the expression of four selected CesA genes classified into Clades 1 and 6 after treatment with $10^{-4}$ and $10^{-3}M$ 1-aminocyclopropane-1-carboxylic acid (ACC) was examined in the hypocotyl of 4-6-day-old flax seedlings. Results ACC-induced ethylene either up- or down-regulated the expression of the CesA genes depending on the clade to which these genes belonged, age of seedlings, part of the hypocotyl, and concentration of ACC. Conclusion Ethylene might be one of the factors regulating the expression of CesA genes in flax seedlings.

Isolation and Characterization of a New Fluorescent Pseudomonas Strain that Produces Both Phenazine 1-Carboxylic Acid and Pyoluteorin

  • HU, HONG-BO;XU, YU-QUAN;FENG CHEN;XUE HONG ZHANG;HUR, BYUNG-KI
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.86-90
    • /
    • 2005
  • Strain M-18 was isolated from the rhizosphere soil of sweet melon, using 1-aminocyclopropane-1-carboxylate (ACC) as a sole nitrogen source. Its phenotypic characteristics, metabolic tests, and 16S rDNA sequence were analyzed. The antibiotics secreted by strain M-18 were determined to be phenazine 1-carboxylic acid and pyoluteorin. These data showed that strain M-18 was a new fluorescent Pseudomonas strain that produced both phenazine 1-carboxylic acid and pyoluteorin, some features being similar to Pseudomonas aeruginosa and Pseudomonas fluorescens. Therefore, the strain M-18 appears to be the first pseudomonad described to date that is capable of producing both phenazine 1-carboxylic acid and pyoluteorin.

$Ca^{2+}$ Effect on Conversion of Exogenous 1-Aminocyclopropane-1-Carboxylic Acid to Ethylene in Vigna radiata Protoplasts

  • Seung-Eun Oh
    • Journal of Plant Biology
    • /
    • 제37권3호
    • /
    • pp.271-276
    • /
    • 1994
  • The possibility that 1-aminocyclopropane-1-carboxylic acid (ACC)-uptake may be dependent on the H+-gradient established across the plsma membrane was tested in protoplasts isolated from 2.5 day old mungbean hypocotyls. The ACC-induced ethylene production was inhibited when the H+-gradient was collapsed by the treatment with carbonycyamide-p-trifluro-methoxy-phenylhydrazone (FCCP). Moreover, the treatment with o-vanadate, a specific inhibitor of plasma membrane H+-ATPase, caused the inhibition of ethylene production. The ACC-induced ethylene production was inhibited by the treatemnt with verapamil (Ca2+-channel blocker), or ethylene glycol-bis($\beta$-aminoethyl ether) N, N, N', N'-tetraacetic acid (EGTA) (Ca2+-chelator). In contrast, the ehtylene production was stimulated by the application of A23187 (Ca2+ ionophore). The inhibitory effect of EGTA in the ethylene producton was magnified in the presence of A23187. From these results, we suggest that the external Ca2+ influx to the cytosol resulted in the stimulatin of ACC oxidase activity after ACC-uptake resulting from a H+-gradient across the plasma membrane.

  • PDF

Plant Growth-Promoting Trait of Rhizobacteria Isolated from Soil Contaminated with Petroleum and Heavy Metals

  • Koo, So-Yeon;Hong, Sun-Hwa;Ryu, Hee-Wook;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권3호
    • /
    • pp.587-593
    • /
    • 2010
  • Three hundred and seventy-four rhizobacteria were isolated from the rhizosphere soil (RS) or rhizoplane (RP) of Echinochloa crus-galli, Carex leiorhyncha, Commelina communis, Persicaria lapathifolia, Carex kobomugi, and Equisetum arvense, grown in contaminated soil with petroleum and heavy metals. The isolates were screened for plant growth-promoting trait (PGPT), including indole acetic acid (IAA) productivity, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and siderophore(s) synthesis ability. IAA production was detected in 86 isolates (23.0%), ACC deaminase activity in 168 isolates (44.9%), and siderophore(s) synthesis in 213 isolates (57.0%). Among the rhizobacteria showing PGPT, 162 isolates had multiple traits showing more than two types of PGPT. The PGPT-possesing rhizobacteria were more abundant in the RP (82%) samples than the RS (75%). There was a negative correlation (-0.656, p<0.05) between the IAA producers and the ACC deaminase producers. Clustering analysis by principal component analysis showed that RP was the most important factor influencing the ecological distribution and physiological characterization of PGPT-possesing rhizobacteria.

Ethylene Production and Expression of Two Ethylene Biosynthetic Genes in Senescing Flowers of Hosta ventricosa

  • Zhu, Xiaoxian;Hu, Haitao;Guo, Weidong;Chen, Jianhua;Wang, Changchun;Yang, Ling
    • 원예과학기술지
    • /
    • 제32권2호
    • /
    • pp.261-268
    • /
    • 2014
  • Senescence of Hosta ventricosa flowers was firstly characterized as ethylene-sensitive since the deterioration of the tepal was accompanied by increased endogenous ethylene biosynthesis. The full-length cDNAs and DNAs of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and ACC oxidase (ACO) involved in ethylene biosynthesis were cloned from H. ventricosa flowers. The HvACS ORF with 1347 bp and two introns, encoded a polypeptide of 448 amino acids showing 79% homology with that in Musa acuminata. The HvACO ORF contained 957 bp and three introns, encoding a 318-residue polypeptide showing 83% homology with that in Narcissus tazetta. The timing of the induction of HvACS expression was in correspond to the timing of the increase in ethylene production, and that the up-regulation of HvACO transcript was closely correlated with an elevated ethylene production, but underwent a down-regulation in wounded leaves with elevated ethylene emission. The results, together with expression analysis in vegetative tissues, suggested that both HvACS and HvACO were specifically regulated by flower senescence.

물억새 뿌리로부터 Agrobacterium sp. BE516 균주의 분리 및 식물생육촉진활성 (Isolation of Agrobacterium sp. BE516 from the Root of Miscanthus sacchariflorus and Its Plant Growth Promoting Activity)

  • 강혜영;박동진;이재찬;권미경;김승범;김창진
    • Journal of Applied Biological Chemistry
    • /
    • 제55권2호
    • /
    • pp.129-133
    • /
    • 2012
  • 비식량 바이오매스 대상작물인 억새의 생육을 촉진하는 균주를 선발하기 위하여 충북 청원군 대청호 주변에서 서식하는 물억새 뿌리로부터 64균주를 분리하였다. 분리균의 식물생육촉진 활성을 확인하기 위하여 옥신, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase 생선능 및 기타 배양조건에 따른 생육 특성을 조사한 결과, 8균주가 선발되었으며 Agrobacterium sp. BE516 균주가 억새 줄기의 생육을 2배 이상 증가시켜 가장 활성이 뛰어난 균주로 선발되었다. Agrobacterium sp. BE516 균주는 식물호르몬 indole acetic acid를 64 ${\mu}g/mL$ 생산하고, 염 및 건조 등의 환경 스트레스 저항성 ACC deaminase 를 생산하며, $4-15^{\circ}C$, pH 4.0 및 4% NaCl 농도에서 생육하였다. 따라서, Agrobacterium sp. BE516 균주가 간척지와 같은 조건불리지역에서 비식용 바이오매스 대상작물인 억새의 생육을 촉진시키기 위한 미생물비료제 개발에 유용한 균주임을 확인하였다.

벼에 대한 Ethylene의 생리작용에 관한 연구 IV. 벼 유묘와 엽의 Ethylene 생성량에 미치는 Methionine 및 1-Aminocyelopropane-1-Carboxylic Acid의 영향 (Studies on Physiological Action of Ethylene in Rice Plant IV. Effect of Methionine and ACC on Ethylene Evolution Seedling and Leaf Blade of Rice)

  • 이문희
    • 한국작물학회지
    • /
    • 제30권2호
    • /
    • pp.184-189
    • /
    • 1985
  • 질소수준이 높아짐에 따라서 벼 엽신에서 에칠렌 생성량이 감소하는 원인에 대하여 에칠렌생합성계에 존재하는 전구물질 메치오닌 및 직접전구물질 ACC등을 벼에 처리하여 에칠렌생성량에 미치는 영향을 검토한 결과를 요약하면 다음과 같다. 1. 벼 유묘 및 엽에 메치오닌을 처리하면 처리농도가 높을수록 에칠렌생성량은 증가하였다. 2. 직접전구물질인 ACC를 엽신에 처리하면 처리농도가 높을수록 에칠렌생성량은 직선적으로 증가하였다. 3. 질소수준이 다를 벼의 유묘 및 엽신에 메치오닌 및 ACC를 처리하면 에칠렌생성량은 증가하나 질소수준이 높아질수록 에칠렌생성량은 현저히 억제 되어진다.

  • PDF

Effects of Light on the Expression of 1-Aminocyclopropane-1-Carboxylic Acid Synthase and Oxidase Genes in Mung Bean Hypocotyls

  • Song, Ju-Dong;Lee, Dong-Hee;Rhew, Tae-Hyong;Lee, Choon-Hwan
    • Journal of Photoscience
    • /
    • 제10권2호
    • /
    • pp.189-193
    • /
    • 2003
  • The effects of light on the regulation of ethylene biosynthesis during development of mung bean seedlings were investigated by monitoring the differential expression of seven 1-aminocyclopropane-l-carboxylate (ACC) synthase and two ACC oxidase genes. Among them, only the expression of VR-ACS1, VR-ACS6, VR-ACS7, VR-ACO1 and VR-AC02 was observable in etiolated mung bean hypocotyls. When the seedlings were de-etiolated for 1 d under a light/dark cycle of 16 h/8 h, the expression of VR-ACS6, VR-ACS7 and VR-ACO2 was controlled negatively by light. The expression of VR-ACS1 showed a tendency to increase until 6 h after a dark-to-light transition and then decreased at 12 h. On the other hand, the expression of VR-ACO1 was mostly constitutive up to 12 h after the dark-to-light transition. The opening of hypocotyl hooks during de-etiolation in the light was stimulated by the inhibition of the action of endogenous ethylene in the presence of 1-MCP. These results suggest that the negative regulation of light on the expression of ACC synthase and ACC oxidase genes eventually results in the inhibition of ethylene production with an acceleration of the opening of apical hooks.

  • PDF