• Title/Summary/Keyword: 1:10 Reverberation Chamber

Search Result 19, Processing Time 0.019 seconds

Vibration Isolation System of a Large Reverberation Chamber (대형 잔향실의 방진 설계 및 검증)

  • 김영기;김홍배;이동우;우성현;문상무
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1026-1031
    • /
    • 2003
  • A vibration isolation system fur a large reverberation chamber (1,228㎥, 1,000ton) has been installed. The reverberation chamber generates loud noise and induces high level of vibration to perform spacecraft acoustic environmental tests. The isolation system prevents vibration transfer from the chamber to enclosure buildings. This paper describes logical design process and commissioning experiments of the system. Design criteria have been induced from rigid body model of the chamber. Finite element model has been employed to select the characteristics of rubber pads. A total of 21 rubber pads have been installed between the chamber and supporting pedestals. A sand bag of 800kg was dropped on the chamber floor to measure the natural frequency of the isolation system. Absolute transmissibility has been measured while generating 145㏈ in the chamber. The natural frequency of the chamber is 10.5㎐, which is 80% of estimated value. Overall transmissibility at working frequency range (25㎐-10,000㎐) is less than -6㏈.

  • PDF

Design and Verification of a Large Reverberation Chamber's Isolation System (대형 잔향실의 방진 구조 설계 및 검증시험)

  • 김홍배;이득웅
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1066-1074
    • /
    • 2004
  • A vibration isolation system for a large reverberation chamber (1,228 $m^3$ and 1,000 ton) has been installed and verified. The reverberation chamber generates loud noise and induces high level of vibration while performing spacecraft acoustic reliability tests. The isolation system prevents vibration transfer from the chamber to the enclosure buildings. This paper describes design process and commissioning experiments of the system. Design criteria have been derived from rigid body model of the chamber. The stiffness of neoprene pads has been selected by employing finite element analysis of the reverberant chamber and isolation system. A total of 21 neoprene pads have been installed between the chamber and supporting Pedestals. A sand bag of 800kg was dropped on the chamber floor to measure the natural frequency of the isolation system. While 136.9 dB noise is generated in the chamber, absolute transmissibility of the isolation system has been measured. The measured natural frequency of the chamber is 10.2Hz, which is 80% of the predicted value. Overall transmissibility at working frequency range (25∼10.000 Hz) is less than -12.4 dB.

A Study to Estimate Transmission Loss of HST using a Small Scale Reverberation Chamber (소형잔향실을 이용한 고속철도 차량 구조재의 투과손실 연구)

  • Kim, Tae-Min;Kim, Jeung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.19-23
    • /
    • 2011
  • The method to reduce interior noise of train was being studied. To improve transmission loss of train is one of the best way to reduce interior noise. But, the estimate to transmission loss requires lots of the commercial costs. In this study, the method to estimate transmission loss of high speed train is proposed using a scale reverberation chamber. The result shows that a transmission loss estimated using small scale reverberation is similar to that using huge reverberation chamber. The transmission loss estimated based on small scale reverberation chamber can be optimal with respect to the commercial coasts.

Measuring Scattering Coefficient in 1:10 Reverberation Chamber Using the ISO Method (ISO 방법론 및 1:10 축소잔향실을 이용한 확산률 측정)

  • 전진용;이병권;정갑철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.252-256
    • /
    • 2001
  • Scattering of surface materials has been known as one of the most important aspects in evaluating the acoustics of concert halls are designed. One of the methods that can reduce the errors in estimating the reverberation time and other acoustic parameters through computer modeling is to calculate scattering coefficient of surface materials. However. so far, no objective and reliable methods measuring scattering coefficient has been suggested. In this situation, ISO has suggested the method of measuring the random-incidence scattering coefficient on surfaces in diffuse field, whereas AES has introduced a method on directional-incidence in free field. In this study, the scattering coefficients of five kinds of hemispheres (1.5, 2.0. 2.5. 3.0. 3.5cm) were measured by using the ISO method in 1:10 reverberation chamber. It was found that 3.0cm hemisphere has the highest scattering coefficient satisfying 95% reliability.

  • PDF

Comparison Study of Sound Transmission Loss in High Speed Train

  • Kim, Tae-Min;Kim, Jeung-Tae
    • International Journal of Railway
    • /
    • v.4 no.1
    • /
    • pp.19-27
    • /
    • 2011
  • Many studies for improving the railway vehicle's performance and comfort such as speed, weight and noise are currently in progress. Improving the structural characteristics of the vehicle for greater noise insulation is considered important for reducing disturbance due to noise, but measuring transmission loss entails large costs. This study explores an alternative method for estimating and measuring the railway vehicle's transmission loss that involves on applying the numerical analysis coupled with scaled reverberation chamber measurement. The transmission loss measurement using scaled reverberation chamber was performed after the compensation value was found through 1mm thickness(1t) specimen. For numerical analysis, a commercially available acoustics solver VA ONE was used. The proposed method is found to lead to transmission loss measurement comparable to the measurements based on large-scale reverberation chamber. Thus, it can be argued that a reliable method has been developed for measuring railway vehicle's transmission loss.

Optimization and Improvements of Field Uniformity in a Reverberation Chamber with Schroeder Diffusers (Schroeder 확산기를 이용한 전자파 잔향실내의 필드 균일도 향상 및 최적화에 관한 연구)

  • Kim, Jung-Hoon;Rhee, Joong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.372-378
    • /
    • 2007
  • This paper presents an improvement of field uniformity in a reverberation chamber with QRDs(Quadratic Residue Diffuser) and also shows the optimal dimension of the QRDs. The QRD is designed for $1{\sim}3\;GHz$ frequency band and the FDTD(finite-Difference Time-Domain) method is used to analyze the field characteristics. At 2 GHz, the standard deviation of test volume in the reverberation chamber is the smallest when the QRD has $30{\sim}60\;%$ coverage of one side of the reverberation chamber and the field uniformity is worsened when the coverage of the QRD is either below 20 % or above 70 % of the area of the side wall. Particularly, the standard deviation of test volume in the reverberation chamber with 30 % coverage of QRD is improved by 1.53 dB compared to that of the reference chamber with no QRDs.

0.65-7 GHz Inverse Conical Antenna for Reverberation Chamber (전자파 잔향실용 0.65-7 GHz 광대역 역원뿔 안테나 설계)

  • Jeong, Jin-Young;Chung, Jae-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.10-14
    • /
    • 2017
  • A reverberation chamber is widely used in mobile handset measurements due to its faster and simpler measurement process compared to traditional anechoic chambers. We propose an ultra-wideband inverse conical antenna design suitable as a reference antenna in a reverberation chamber. Traditionally, multiple discone antennas are needed to cover more than 10:1 operation bandwidth of a reverberation chamber. The proposed inverse conical antenna offers wideband impedance matching bandwidth by virtue of the linear impedance transition along its oblique side. The antenna is feasible to mount on the conductive walls which can be utilized as a ground to improve the matching bandwidth, antenna gain and radiation patterns. The antenna geometry is optimized using a 3D electromagnetic simulation tool and fabricated using a 3D printer. The measured results show that the antenna reflection coefficient lower than -10dB and radiation efficiency more than 70% at the frequency range of 0.65~7 GHz.

Design of the Acoustical Diffuser using the ISO method (ISO 방법론을 이용한 음향 확산체 설계)

  • Seo, Choon-Ki;Lee, Pyoung-Jik;Jeong, Jeong-Ho;Jin, Yong-Jeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.29-32
    • /
    • 2008
  • In this study, acoustic diffusers were designed as to the ISO method, which measured the random-incidence scattering coefficient of surfaces in a diffuse field. The diffusers which were made of GFRG (Glass Fiber Reinforced Gypsum), consisted of the cubes with different height and width. The height was from 50 to 250 mm and the maximum height was at the center of the diffusers to provide the early reflections. The surfaces were irregularly designed in order to add the lateral reflections. The scattering coefficient of the diffusers was measured in a 1;10 reverberation chamber, but the absorption coefficient was measured in a real scale reverberation chamber. The result of the scattering coefficient was compared to the hemisphere diffusers and the absorption coefficient was compared to ISO 354 data. To validate the measurement results, the scattering coefficient of the diffusers will be measured in a real scale reverberation chamber.

  • PDF

Floor Impact Sound Pressure Level Characteristics by the Change of Reverberation Time in a Reverberation Chamber (수음실 잔향 시간변화에 따른 바닥충격음레벨 특성 - 잔향실을 중심으로 -)

  • Jeong, Jeong Ho;Kim, Jeong Uk;Jeong, Jae Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.274-281
    • /
    • 2013
  • Field measurement method of heavy/soft impact sound pressure level which is regulated in JIS and ISO has been using in Korea, Japan and Canada. It is reported that heavy/soft impact sound pressure level was varied by the sound field condition of receiving room such as sound absorption power and room volume. In this study, it is checked that heavy/soft impact sound pressure level was affected by the receiving sound field condition. Rubber ball and bang machine sound pressure level was measured in the vertically connected reverberation chamber. In oder to check the effect of receiving sound field on heavy/soft impact sound pressure, sound absorption power was changed with polyester sound absorption blankets with air space and glass wool. The reverberation time at 1 kHz band was changed from 10 s to 0.2 s by sound absorption material. Rubber ball sound pressure level measured without sound absorption material was 58 dB in $L_{i,Fmax,AW}$, but the level was 46 dB with sound absorption treatment. From this result, it is confirmed that sound field correction method is needed in the heavy/soft impact sound pressure level measurement method using bang machine and rubber ball.

Acoustical design for remodeling of the Little theatre in Sejong Performing Arts Center (세종문화회관 소극장 리모델링을 위한 음향설계)

  • Jeon, Jin-Yong;Lee, Pyoung-Jik;Seo, Choon-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.991-996
    • /
    • 2007
  • The Little theater in Sejong Performing Arts Center is a proscenium theater with 447 seats, which was built in 1978. The remodeling of the theater was decided in 2005 and acoustical design was conducted. Design guidelines were suggested based on the feasibility studies and acoustical measurement results. Target reverberation time was set at 1.2-1.6s with respect to the main performances. For the acoustical design, side balconies were added to increase the level of lateral reflections. Acoustic diffusers were designed and scattering coefficients were measured in a 1:10 reverberation chamber. From the results of computer simulation and a 1:10 scale model measurement, it was indicated that the new space will have RT of 1.2-1.6 s in middle frequencies when fully occupied.

  • PDF