• Title/Summary/Keyword: 1차원 열 해석

Search Result 230, Processing Time 0.02 seconds

Two and Three-Dimensional Analysis Comparison of Nozzles due to Internal Pressure, Thermal Load and External Load (내부압력, 열하중 및 외부하중을 고려한 노즐의 2차원 및 3차원 해석 비교)

  • Yoon, Hyo-Sub;Kim, Jong-Min;Maeng, Cheol-Soo;Kim, Hyun-Min;Lee, Dae-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.283-291
    • /
    • 2015
  • In this paper, the two-dimensional(2D) and three-dimensional(3D) analyses have been performed in order to evaluate the structural integrities and compare 2D and 3D results for nozzles attached to cylindrical shells. Three nozzles, which are currently used in the nuclear power plant, are chosen to evaluate the structural integrities, and each nozzle is subjected to internal pressure, temperature variation and external loads. It is found that the 2D analysis for internal pressure should be performed with a factor of more than 1.5 or a stress concentration factor; 2D and 3D analysis results for temperature variation are almost similar to each other regardless of cladding; and the analysis results for external loads by WRC Bulletin 297 are more conservative than the 3D analysis results.

Numerical Simulation of Flow and Thermal Performance in the Municapal Solid Waste Incinerator (도시폐기물 소각로내 열유동 해석을 위한 수치해석적 연구)

  • 박병수;이진욱;이정한;허일상
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1997.10a
    • /
    • pp.93-98
    • /
    • 1997
  • 도시폐기물의 효율적인 소각 처리를 위해서 폐기물 처리량 50 ton/day의 화격자 소각로를 대상으로 화학반응을 고려하여 연소실 내부의 열유동 현상을 전산모사하였다. 수치해석 프로그램으로 상용코드인 PHOENICS를 사용하여 3차원 모사를 하여 실험으로 파악할 수 없는 연소실 내부의 유동 및 폐기물과 산화제와의 반응을 계산하였다. 건조부, 주연소부, 후연소부에 1차연소용공기, 연료의 분포 및 폐기물의 발열량이 노내 열유동 현상에 미치는 영향을 조사하였다. 1차연소용 공기의 분포에 따라 노내 유동장의 형태에 변화가 있었으며, 벽면에서의 복사열전달을 고려한 경우 2차연소실과 출구근처에서 온도분포가 파일롯트 플랜트 실험결과와 잘 일치하는 r서으로 나타났다.

  • PDF

Numerical Study on Surface Air-Oil Heat Exchanger for Aero Gas-Turbine Engine Using One-Dimensional Flow and Thermal Network Model (항공기 가스터빈용 오일쿨러 해석을 위한 1 차원 열유동 네트워크 수치적 모델 개발 및 연구)

  • Kim, Young Jin;Kim, Minsung;Ha, Man Yeong;Min, June Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.915-924
    • /
    • 2014
  • In an aero gas-turbine engine, a surface air-oil heat exchanger (SAOHE) is used to cool the oil system for the gearboxes and electric generators. The SAOHE is installed inside the fan casing of the engine in order to dissipate the heat from the oil system into the bypass duct stream. The purpose of this study was to develop an effective numerical method for designing an SAOHE for an aero gas-turbine engine. A two-dimensional model using a porous medium was developed to evaluate the aero-thermal performance of the fins of the heat exchanger, and a one-dimensional flow and thermal network program was developed to save time and cost in the evaluation of the heat exchanger performance. Using this network program, the pressure drop and heat transfer performance of the heat exchanger were predicted, and the results were compared with two-dimensional computational fluid dynamics results and experiment data for validation.

A Study on the Evaluation of Thermal Transmittance Performance of Aluminum Alloy Window Frame of Educational Facility considering 2 Dimensional Steady-state Heat Transfer (2차원 정상상태 전열해석을 통한 교육시설의 알루미늄 창호 열관류율 평가에 관한 연구)

  • Park, Tong-So
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5284-5289
    • /
    • 2011
  • This study focused to evaluate thermal transmittance(U-value) performance of sliding type of aluminum alloy window frame(AAWF) with double glazing(DG) and glazing spacer and that without thermal breaker in winter and summer season by two dimensional steady state heat transfer analysis. The AAWE was installed to an existing educational facilities in Seosan area which is the southern region of the Korean Peninsula. Analysis of 2D steady-state heat transfer was performed through the use of BISCO as calculation and simulation program. U-value and temperature factors were calculated. The results are as followed. First, the isotherm simulation shows that AAWF with double glazing have serious differences from recently proposed window thermal performance standards such as Insulation Performance of Windows and Doors of Building Energy Saving Design Standards and the results of calculation of thermal transmittance performance of AAWF and DG are U=9.631 W/$m^2K$, U=2.382 W/$m^2K$ respectively during winter and summer season. Second, the results of analysis of heat transfer analysis, calculated by simulation, shows that 225% of heat is lost comparing with thermal performance standards U=4.0 W/$m^2K$ of general double glazing among those standards on AAWF without thermal breaker.

One Dimensional Thermal Elasto-Plastic Analysis Using Layered Beam Theory (적층보 이론을 이용한 1차원 열탄소성 해석)

  • S.I.,Seo;C.D.,Jang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.51-57
    • /
    • 1990
  • There exist residual stresses and deformations in welded structures because of nonuniform temperature distribution. The thermal elasto-plastic analysis is necessary to describe the behavor of the structure during welding. In this paper, we calculated the residual stresses and deformations of the welded beam using the I-dimensional layered beam theory. In the previous 1-dimensional analyses, there were restrictions that the equilibrium conditions which were effective only on beams with infinite length were used, and the boundary conditions could not be considered adequately. But, the layered beam theory based on the incremental finite element method, can overcome these restrictions. On the other hand, in the 2-dimensional analysis, the computing time is large because of many degrees of freedom, and there was inaccuracy in the calculation of welding deformations. However, the layered beam theory can take into account the variation of properties along the depth, and can reduce the degrees of freedom considerably in comparision with the 2-dimensional analysis, and shows good agreement with the experiments.

  • PDF

Development of Thermal-Hydraulic-Mechanical Coupled Numerical Analysis Code for Complex Behavior in Jointed Rock Mass Based on Fracture Mechanics (균열 암반의 복합거동해석을 위한 열-수리-역학적으로 연계된 파괴역학 수치해석코드 개발)

  • Kim, Hyung-Mok;Park, Eui-Seob;Shen, Baotang;Synn, Joong-Ho;Kim, Taek-Kon;Lee, Seong-Cheol;Ko, Tae-Young;Lee, Hee-Suk;Lee, Jin-Moo
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.66-81
    • /
    • 2011
  • In this study, it was aimed to develop a thermal-hydraulic-mechanical coupled fracture mechanics code that models a fracture initiation, propagation and failure of underground rock mass due to thermal and hydraulic loadings. The development was based on a 2D FRACOD (Shen & Stephasson, 1993), and newly developed T-M and H-M coupled analysis modules were implemented into it. T-M coupling in FRACOD employed a fictitious heat source and time-marching method, and explicit iteration method was used in H-M coupling. The validity of developed coupled modules was verified by the comparison with the analytical result, and its applicability to the fracture initiation and propagation behavior due to temperature changes and hydraulic fracturing was confirmed by test simulations.

주조 해석을 위한 3차원 상변화 유한 요소 해석 프로그램 개발

  • 하성규;조성수
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.147-159
    • /
    • 1997
  • 본 연구에서는 상변화 영역에서 열평형 방정식을 별도로 수식화하지 않고도 잠열의 영향을 고려할 수 있으며, 고상과 액상 그리고 2상 영역에서 동일한 형태의 방정식을 사용할 수 있는 엔탈피법을 이용하였다. 상변화 문제의 엔탈피법을 이용한 유한요소해석을 위하여 8개의 절점을 가지며, 각 절점에서 1개의 자유도를 가지는 3차원 육면체 요소가 개발되었다. 해법의 타당성과 해의 정확도를 검증하기 위하여 엄밀해가 존재하는 상변화 문제를 유한요소법으로 해석하고 그 결과를 비교 검토하였다. 연구 결과, 엔탈피법에 의한 유한요소해는 상변화 영역이 하나의 특정 온도인 경우는 물론 온도 구간으로 나타나는 경우에도 시간 증분과 요소수에 크게 영향을 받지 않고 안정된 해가 됨을 알 수 있었다. 검증된 요소를 이용하여 3차원 상변화 문제에 적용하여 해를 나타내었다.

  • PDF

Cooling Performance Analysis of Regeneratively Cooled Combustion Chamber (재생냉각 연소실의 냉각성능 해석)

  • Cho, Won-Kook;Seol, Woo-Seok;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.67-72
    • /
    • 2004
  • A regenerative cooling system has been designed through empirical 1-D analysis for a liquid rocket engine of 30-ton-level thrust. The hot-gas-side wall temperature from 1-D analysis shows 100K difference compared to 3D CFD analysis. Two variations of design with same cooling performance are suggested for different maximum channel widths i.e., 4mm and 2mm. The coolant pressure drop of the latter design is higher by 20%. The maximum liner temperature is about 700K when TBC and the thermal resistance of carbon deposit are considered. So film cooling is recommended to increase the cooling capacity as the present cooling capacity is insufficient

Numerical Investigation of Dual Mode Ramjet Combustor Using Quasi 1-Dimensional Solver (근사 1차원 솔버를 이용한 이중모드 램제트 연소실 해석)

  • Yang, Jaehoon;Nam, Jaehyun;Kang, Sanghun;Yoh, Jai-ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.909-917
    • /
    • 2021
  • In this work, a one-dimensional combustor solver was constructed for the scramjet control m odel. The governing equations for fluid flow, Arrhenius based combustion kinetics, and the inje ction model were implemented into the solver. In order to validate the solver, the zero-dimensi onal ignition delay problem and one-dimensional scramjet combustion problem were considered and showed that the solver successfully reproduced the results from the literature. Subsequentl y, a ramjet analysis algorithm under subsonic speed conditions was constructed, and a study o n the inlet Mach number of the combustor was carried out through the thermal choking locatio ns at ram conditions. In such conditions, a model for precombustion shock train analysis was i mplemented, and the algorithm for transition section analysis was introduced. In addition, in or der to determine the appropriateness of the ram mode analysis in the code, the occurrence of a n unstart was studied through the length of the pseudo-shock in the isolator. A performance a nalysis study was carried out according to the geometry of the combustor.

The Comparison of the In-Situ Thermal Response Tests and CFD Analysis of Vertical-type Geothermal Heat Exchanger (수직형 지중 열교환기의 현장 열응답 시험과 CFD 해석 비교)

  • Sim, Yong-Sub;Lee, Hee-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3164-3169
    • /
    • 2013
  • In this study, a series of CFD analysis was performed in order to predict the leaving water temperature and the slope of in-situ thermal response tests of the vertical-type geothermal heat exchangers. The geothermal heat exchanger and surrounding ground formation were modeled using GAMBIT and simulation was used by utilizing FLUENT which is commercial CFD code. Comparing with the results of CFD and in-situ thermal response tests, the results of CFD was presented good agreement with $0.5^{\circ}C$ difference of Leaving Water Temperature and with 1.6% difference of the Slope.