• 제목/요약/키워드: 1차원모델

Search Result 2,026, Processing Time 0.034 seconds

A Study on Floating Waste Trace in Flood Control Dam Using the EFDC Model (EFDC 모델을 활용한 홍수조절용 댐의 부유쓰레기 유동 모의)

  • JANG, Suk-Hwan;OH, Kyung-Doo;OH, JiHwan;HAN, SuHee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.336-336
    • /
    • 2015
  • 일반적인 다목적댐은 홍수 발생 시 본댐으로 유입되는 부유쓰레기 및 잡목 등을 차단하기 위하여 댐 상류에 차단망을 설치하여 1차적으로 사전 방지하고, 홍수기 이후 선박으로 부유물을 수거하여 재활용, 소각 등으로 처리하는 시스템이다. 그러나 본 연구의 대상인 한탄강댐은 홍수조절용 댐으로서 수위 변화 폭이 매우 크고 정상 조건(비 홍수기)시는 대규모 홍수터가 드러나기 때문에 댐 유지관리 방법이 상이하며 한탄강 본류 구간은 하폭과 수심 등 하도의 불규칙성과 만곡부에서 유수의 흐름이 한쪽으로 쏠리는 편기 현상이 발생하는 등 복잡한 수리현상으로 인하여 부유쓰레기의 분포를 판단하기 어려운 지역이다. 따라서 본 연구에서는 부유쓰레기의 유동을 모의하기 위하여 HEC-HMS 모형과 $Vflo^{TM}$ 모형을 활용하여 본류와 지류의 빈도별 홍수량 분석을 실시하고, EFDC 3차원 동수역학 모형을 적용하여 홍수조절용지 내 부유쓰레기의 유입 경로 및 정체 구역을 분석하여 효과적인 쓰레기 처리 방안을 제시하고자 하였다. 분석 결과, 소규모 빈도 홍수(2년, 5년)의 경우 중 상류 지류의 부유쓰레기는 거의 유동하지 못하고 하도의 만곡의 영향을 받아 부분적으로 높은 밀도로 고착될 것으로 모의되며, 특히 본류와의 합류점 부근에 도달한 부유쓰레기는 유로 폭이 급확대되어 유속이 거의 없는 사수역 구간으로 변함에 따라 본류 배수위 영향으로 불규칙하게 맴돌다가 고착되는 것으로 모의되었다. 중규모 홍수(25년, 50년)의 경우, 상류부의 부유쓰레기의 분포는 소규모 홍수 시와 유사한 패턴을 보였으나 중류부에서 홍수파가 본류 하도를 월류하여 홍수터로 넓게 범람하는 지역에서는 소규모 홍수 시 본류 하도 양안에 분포하던 부유쓰레기가 홍수터 쪽으로 밀려가서 고착되는 경향을 보였다. 대규모 홍수(100년, 200년)의 경우, 댐과 인접한 분석 구간 하류부는 댐 배수위의 영향을 가장 크게 받으며 수심이 깊어 흐름이 가장 정체되는 구간으로 본류와 지류 모두 다량의 부유쓰레기가 분포할 것으로 분석되었다. 분석 구간 중류부는 홍수 규모가 증가함에 따라 넓은 홍수터로 침수범위가 급격하게 증가하며 이에 따라 부유쓰레기가 분포할 수 있는 면적이 크게 증가할 것으로 분석되었다. 또한 분석 구간 상류부는 협곡을 이루고 있어 홍수규모가 증가하더라도 침수범위와 부유쓰레기의 분포면적에 큰 변화가 없을 것으로 분석되었다. 본 연구 결과를 바탕으로 댐의 치수 문제가 발생하지 않도록 효과적으로 수거 처리 할 수 있는 부유쓰레기 적치장 및 차단 시설의 적정 설치 위치를 파악하였다.

  • PDF

Target Length Estimation of Target by Scattering Center Number Estimation Methods (산란점 수 추정방법에 따른 표적의 길이 추정)

  • Lee, Jae-In;Yoo, Jong-Won;Kim, Nammoon;Jung, Kwangyong;Seo, Dong-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.543-551
    • /
    • 2020
  • In this paper, we introduce a method to improve the accuracy of the length estimation of targets using a radar. The HRRP (High Resolution Range Profile) obtained from a received radar signal represents the one-dimensional scattering characteristics of a target, and peaks of the HRRP means the scattering centers that strongly scatter electromagnetic waves. By using the extracted scattering centers, the downrange length of the target, which is the length in the RLOS (Radar Line of Sight), can be estimated, and the real length of the target should be estimated considering the angle between the target and the RLOS. In order to improve the accuracy of the length estimation, parametric estimation methods, which extract scattering centers more exactly than the method using the HRRP, can be used. The parametric estimation method is applied after the number of scattering centers is determined, and is thus greatly affected by the accuracy of the number of scattering centers. In this paper, in order to improve the accuracy of target length estimation, the number of scattering centers is estimated by using AIC (Akaike Information Criteria), MDL (Minimum Descriptive Length), and GLE (Gerschgorin Likelihood Estimators), which are the source number estimation methods based on information theoretic criteria. Using the ESPRIT algorithm as a parameter estimation method, a length estimation simulation was performed for simple target CAD models, and the GLE method represented excellent performance in estimating the number of scattering centers and estimating the target length.

Abnormal Crowd Behavior Detection via H.264 Compression and SVDD in Video Surveillance System (H.264 압축과 SVDD를 이용한 영상 감시 시스템에서의 비정상 집단행동 탐지)

  • Oh, Seung-Geun;Lee, Jong-Uk;Chung, Yongw-Ha;Park, Dai-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.183-190
    • /
    • 2011
  • In this paper, we propose a prototype system for abnormal sound detection and identification which detects and recognizes the abnormal situations by means of analyzing audio information coming in real time from CCTV cameras under surveillance environment. The proposed system is composed of two layers: The first layer is an one-class support vector machine, i.e., support vector data description (SVDD) that performs rapid detection of abnormal situations and alerts to the manager. The second layer classifies the detected abnormal sound into predefined class such as 'gun', 'scream', 'siren', 'crash', 'bomb' via a sparse representation classifier (SRC) to cope with emergency situations. The proposed system is designed in a hierarchical manner via a mixture of SVDD and SRC, which has desired characteristics as follows: 1) By fast detecting abnormal sound using SVDD trained with only normal sound, it does not perform the unnecessary classification for normal sound. 2) It ensures a reliable system performance via a SRC that has been successfully applied in the field of face recognition. 3) With the intrinsic incremental learning capability of SRC, it can actively adapt itself to the change of a sound database. The experimental results with the qualitative analysis illustrate the efficiency of the proposed method.

Estimation of Significant Wave Heights from X-Band Radar Based on ANN Using CNN Rainfall Classifier (CNN 강우여부 분류기를 적용한 ANN 기반 X-Band 레이다 유의파고 보정)

  • Kim, Heeyeon;Ahn, Kyungmo;Oh, Chanyeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.101-109
    • /
    • 2021
  • Wave observations using a marine X-band radar are conducted by analyzing the backscattered radar signal from sea surfaces. Wave parameters are extracted using Modulation Transfer Function obtained from 3D wave number and frequency spectra which are calculated by 3D FFT of time series of sea surface images (42 images per minute). The accuracy of estimation of the significant wave height is, therefore, critically dependent on the quality of radar images. Wave observations during Typhoon Maysak and Haishen in the summer of 2020 show large errors in the estimation of the significant wave heights. It is because of the deteriorated radar images due to raindrops falling on the sea surface. This paper presents the algorithm developed to increase the accuracy of wave heights estimation from radar images by adopting convolution neural network(CNN) which automatically classify radar images into rain and non-rain cases. Then, an algorithm for deriving the Hs is proposed by creating different ANN models and selectively applying them according to the rain or non-rain cases. The developed algorithm applied to heavy rain cases during typhoons and showed critically improved results.

The Effects of Luxury Brand-Self Identification on Brand Attachment and Brand Commitment - The Moderating Role of Regulatory Focus - (명품브랜드-자아 동일시가 브랜드 애착과 브랜드 몰입에 미치는 영향 - 조절초점의 조절효과 -)

  • Ahn, Kwangho;Lee, Jieun;Jeon, Jooeon
    • Asia Marketing Journal
    • /
    • v.10 no.4
    • /
    • pp.1-33
    • /
    • 2009
  • This research investigates the effect of brand-self identification on brand attachment and brand commitment focusing on luxury brand. Another purpose of this study is to examine how the relationships among brand identification, brand attachment and brand committment are moderated by consumers' regulatory focus. Structural Equation Modeling using 214 questionnaires was conducted to test hypothesized model. The results reveal that perceived luxury brand personality including excitement, competence, and sophistication influences brand-self identification positively, which in turn has a signifiant positive effect on the brand attachment. It is also found that consumers' emotional attachment to luxury brands has a positive influence on the luxury brand commitment while the effect of the brand-self identification on the brand commitment is not signifiant. This finding strongly supports that brand attachment and brand commitment are distinct construct, which confirms the results of the previous studies. In addition, the results show that consumers-luxury brands relationships are moderated by consumers' regulatory focus. This finding explains that prevention-focused individuals who have interdependent self-view respond to the loss caused by relationship break more sensitively compared to the promotion-focused consumers. Finally, based on the findings of this study, theoretical contribution and managerial implications are discussed.

  • PDF

The dimension analysis of prepared natural teeth for developing customized zirconia block (맞춤형 지르코니아 블락 제작을 위한 삭제된 치아의 평균 크기 분석)

  • Kim, Min-Hyuk;Kim, Sung-Hun;Yeo, In-Sung;Yoon, Hyung-In;Lee, Jae-Hyun;Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.4
    • /
    • pp.381-388
    • /
    • 2017
  • Purpose: Unpredictable shrinkage of zirconia during sintering process causes discrepancy. Therefore, there have been attempts to reduce discrepancy by milling zirconia after sintering. However, due to the hardness of sintered zirconia, milling takes longer time, causes damage to the machine and causes chip formation. With customized zirconia block using the mean dimension of prepared natural dentition, it is expected to overcome these shortcomings. Materials and methods: The mean dimension of prepared natural dentition was analyzed as STL file after scanning of prepared teeth treated at SNUDH. The transverse, frontal and sagittal planes were set using Mimics and Photoshop. 3D volume was projected on each plane, and the outer line was measured through external tangent line, and the inner line was measured through inflection point of tangent line. Results: The mean height of prepared incisal (N = 57) is $6.60{\pm}1.05mm$, mesiodistal length is $2.98{\pm}0.73mm$, buccolingual length is $2.04{\pm}0.73mm$. The mean height of prepared premolar (N = 15) is $5.37{\pm}1.49mm$, mesiodistal length is $4.10{\pm}1.78mm$, buccolingual length is $5.86{\pm}1.55mm$. And the mean height of prepared molar (N = 13) is $5.11{\pm}1.29mm$, mesiodistal length is $6.80{\pm}1.18mm$, buccolingual length is $7.34{\pm}1.40mm$. Conclusion: Using the mean dimension of prepared natural dentition, it is expected to be able to fabricate customized zirconia block.

Global Ocean Data Assimilation and Prediction System in KMA: Description and Assessment (기상청 전지구 해양자료동화시스템(GODAPS): 개요 및 검증)

  • Chang, Pil-Hun;Hwang, Seung-On;Choo, Sung-Ho;Lee, Johan;Lee, Sang-Min;Boo, Kyung-On
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.229-240
    • /
    • 2021
  • The Global Ocean Data Assimilation and Prediction System (GODAPS) in operation at the KMA (Korea Meteorological Administration) is introduced. GODAPS consists of ocean model, ice model, and 3-d variational ocean data assimilation system. GODAPS assimilates conventional and satellite observations for sea surface temperature and height, observations of sea-ice concentration, as well as temperature and salinity profiles for the ocean using a 24-hour data assimilation window. It finally produces ocean analysis fields with a resolution of 0.25 ORCA (tripolar) grid and 75-layer in depth. This analysis is used for providing a boundary condition for the atmospheric model of the KMA Global Seasonal Forecasting System version 5 (GloSea5) in addition to monitoring on the global ocean and ice. For the purpose of evaluating the quality of ocean analysis produced by GODAPS, a one-year data assimilation experiment was performed. Assimilation of global observing system in GODAPS results in producing improved analysis and forecast fields with reduced error in terms of RMSE of innovation and analysis increment. In addition, comparison with an unassimilated experiment shows a mostly positive impact, especially over the region with large oceanic variability.

Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification (전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법)

  • Byambajav, Batkhuu;Alikhanov, Jumabek;Fang, Yang;Ko, Seunghyun;Jo, Geun Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet) is one class of the powerful Deep Neural Network that can analyze and learn hierarchies of visual features. Originally, first neural network (Neocognitron) was introduced in the 80s. At that time, the neural network was not broadly used in both industry and academic field by cause of large-scale dataset shortage and low computational power. However, after a few decades later in 2012, Krizhevsky made a breakthrough on ILSVRC-12 visual recognition competition using Convolutional Neural Network. That breakthrough revived people interest in the neural network. The success of Convolutional Neural Network is achieved with two main factors. First of them is the emergence of advanced hardware (GPUs) for sufficient parallel computation. Second is the availability of large-scale datasets such as ImageNet (ILSVRC) dataset for training. Unfortunately, many new domains are bottlenecked by these factors. For most domains, it is difficult and requires lots of effort to gather large-scale dataset to train a ConvNet. Moreover, even if we have a large-scale dataset, training ConvNet from scratch is required expensive resource and time-consuming. These two obstacles can be solved by using transfer learning. Transfer learning is a method for transferring the knowledge from a source domain to new domain. There are two major Transfer learning cases. First one is ConvNet as fixed feature extractor, and the second one is Fine-tune the ConvNet on a new dataset. In the first case, using pre-trained ConvNet (such as on ImageNet) to compute feed-forward activations of the image into the ConvNet and extract activation features from specific layers. In the second case, replacing and retraining the ConvNet classifier on the new dataset, then fine-tune the weights of the pre-trained network with the backpropagation. In this paper, we focus on using multiple ConvNet layers as a fixed feature extractor only. However, applying features with high dimensional complexity that is directly extracted from multiple ConvNet layers is still a challenging problem. We observe that features extracted from multiple ConvNet layers address the different characteristics of the image which means better representation could be obtained by finding the optimal combination of multiple ConvNet layers. Based on that observation, we propose to employ multiple ConvNet layer representations for transfer learning instead of a single ConvNet layer representation. Overall, our primary pipeline has three steps. Firstly, images from target task are given as input to ConvNet, then that image will be feed-forwarded into pre-trained AlexNet, and the activation features from three fully connected convolutional layers are extracted. Secondly, activation features of three ConvNet layers are concatenated to obtain multiple ConvNet layers representation because it will gain more information about an image. When three fully connected layer features concatenated, the occurring image representation would have 9192 (4096+4096+1000) dimension features. However, features extracted from multiple ConvNet layers are redundant and noisy since they are extracted from the same ConvNet. Thus, a third step, we will use Principal Component Analysis (PCA) to select salient features before the training phase. When salient features are obtained, the classifier can classify image more accurately, and the performance of transfer learning can be improved. To evaluate proposed method, experiments are conducted in three standard datasets (Caltech-256, VOC07, and SUN397) to compare multiple ConvNet layer representations against single ConvNet layer representation by using PCA for feature selection and dimension reduction. Our experiments demonstrated the importance of feature selection for multiple ConvNet layer representation. Moreover, our proposed approach achieved 75.6% accuracy compared to 73.9% accuracy achieved by FC7 layer on the Caltech-256 dataset, 73.1% accuracy compared to 69.2% accuracy achieved by FC8 layer on the VOC07 dataset, 52.2% accuracy compared to 48.7% accuracy achieved by FC7 layer on the SUN397 dataset. We also showed that our proposed approach achieved superior performance, 2.8%, 2.1% and 3.1% accuracy improvement on Caltech-256, VOC07, and SUN397 dataset respectively compare to existing work.

Estimation of the Superelevation Safety Factor Considering Operating Speed at 3-Dimensional Alignment (입체선형의 주행속도를 고려한 편경사 안전율 산정에 관한 연구)

  • Park, Tae-Hoon;Kim, Joong-Hyo;Park, Je-Jin;Park, Ju-Won;Ha, Tae-Jun
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.159-163
    • /
    • 2005
  • The propriety between suppliers and demanders in geometric design is very important. Although the final purpose of constructing roads is to concern about the driver s comfort, unfortunately, it has not been considered so far. We've considered the regularity and quickness in considering driver's comfort but there should be considered the safety for the accident as well. If drivers are appeared to be more speeding than designer's intention, there will be needed some supplements to increase the safety rate for the roads. Even if both an upward and downward section are supposed to exist at the same time for solid geometry of the roads like this, it is true that the recent design for the 3-D solid geometry section has been done as flat 2-D and the minimum plane curve radius and the maximum cant have been decided just by calculating without considering operating speed between an upward and downward section at the same point. In this investigation, thus, I'd like to calculate the safety of the cant by considering the speed features of the solid geometry for the first lane of four lane rural roads. To begin with, we investigated the driving speed of the car, which is not been influenced by a preceding car to analyze the influence of the geometrical structure by using Nc-97. Secondly, we statistically analyzed the driving features of the solid geometry after comparing the 6 sections, that is, measuring the driving speed feature at 12 points and combining the influence of the vertical geometry and plane geometry to the driving speed of the plane curve which was researched before. Finally, we estimated the value of cant which considers the driving speed not by using it which has applied uniformly without considering it properly, though there were some differences between a designed speed and driving speed through the result of the basic statistical analysis but by introducing the new safety rate rule, a notion of ${\alpha}$. As a result of the research, we could see the driving features of the car and suggest the safety rate which considers these. For considering the maximum cant, if we apply the safety rate, the result of this experiment, which considers 3-D solid geometry, there'll be the improvement of the driver's safety for designing roads. In addition, after collecting and analyzing the data for the road sections which have various geometrical structures by expanding this experiment it is considered that there should be developed the models which considers 3-D solid geometry.

Surface Tension-Water Saturation Relationship as the Function of Soil Particle Size and Aquifer Depth During Groundwater Air Sparging (대수층 폭기공정에서 토양입경 및 지하수 깊이에 따른 표면장력과 함수율의 상관관계)

  • Kim, Heon-Ki;Kwon, Han-Joon
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.65-70
    • /
    • 2009
  • Reduction of groundwater surface tension prior to air sparging (SEAS, surfactant-enhanced air sparging) was known to increase air saturation in the aquifer under influence, possibly enhancing the removal rates of volatile contaminants. Although SEAS was known to be efficient for increasing air saturation, little information is available for different hydrogeological settings including soil particle sizes and the depth of aquifer. We investigated water saturations in the sparging influence zone during SEAS using one-dimensional column packed with sands of different particle sizes and different aquifer depths. An anionic surfactant was used to suppress the surface tension of water. Two different sands were used; the air entry pressures of the sands were measured to be $15.0\;cmH_2O$, and $36.3\;cmH_2O$, respectively. No significant difference was observed in the water saturation-surface tension relationship for sands with different particle sizes. As the surface tension decreased, the water saturation decreased to a lowest point and then it increased with further decrease in the surface tension. Both sands reached their lowest water saturations when the surface tension was set approximately at 42 dyne/cm. SEAS was conducted at three different aquifer depths; 41 cm, 81 cm, and 160 cm. Water saturation-surface tension relationship was consistent regardless of the aquifer depth. The size of sparging influence zone during SEAS, measured using two-dimensional model, was found to be similar to the changes in air saturation, measured using one-dimensional model. Considering diverse hydrogeological settings where SEAS to be applied, the results here may provide useful information for designing SEAS process.