• Title/Summary/Keyword: 1단 압축

Search Result 251, Processing Time 0.028 seconds

Mix Design and Mechanical Properties of Aerated Concrete for Incorporation of Low Temperature PCM (저온 PCM 혼입을 위한 경량기포콘크리트의 배합설계 및 기계적 특성)

  • Baasankhuu, Batzaya;Lim, Myung-Kwan;Lim, Hee-Seob;Choi, Dong-Uk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.110-115
    • /
    • 2017
  • This research was performed to investigate the mechanical performance of lightweight concrete including phase changing material(Low temperature PCM). Micro capsulised PCM consisted of wax type core and melamine based wall. Also, for PCM of one single kind, paraffin wax was inserted into Vermiculite and the surface was coated with melamine resin. Interfacial polymerization is based on the principle that macromolecule reaction takes place on the surfaces between 1-dodecanol(core material) and water (solvent) to form the wall material. Lightweight concrete has compressive strength of 10 MPa, tensile strength of 1.5 MPa, and oven dried density of 1.0kg/liter which included 10%, 20%, or 30% PCM by weight. To do so, this study fabricated light-weight foamed concrete ($1.0kg/m^3$) in pre-foaming method and mixed it with PCM micro capsule of 1-dodecanol and melamine to examine its physical properties.

A Low Power and Area Efficient FIR filter for PRML Read Channels (저전력 및 효율적인 면적을 갖는 PRML Read Channel 용 FIR 필터)

  • 조병각;강진용;선우명훈
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.255-258
    • /
    • 2000
  • 본 논문에서는 효율적인 면적의 저전력 FIR 필터를 제안한다. 제안된 필터는 6 비트 8 탭의 구조를 갖는PRML(Partial-Response Maximum Likelihood) 디스크드라이브 read channel용 FIR 필터이다 제안된 구조는 병렬연산 구조를 채택하고 있으며 네 단의 파이프라인 구조를 가지고 있다. 곱셈을 위하여 부스 알고리즘이 사용되며 압축기를 이용하여 덧셈을 수행한다. 저전력을 위해 CMOS 패스 트랜지스터를 사용하였으며 면적을 줄이기 위해 single-rail 로직을 사용하였다 제안된 구조를 0.65㎛ CMOS 공정을 이용하여 설계하였으며1.88 × 1.38㎟의 면적을 차지하였고 HSPICE 시뮬레이션 결과 3.3V의 공급전압에서 100㎒로 동작시 120㎽의 전력을 소모한다. 제안된 구조는 기존의 구조들에 비해 약 11%의 전력이 감소했으며 약 33%의 면적이 감소하였다.

  • PDF

Experimental Study on the Material Characteristics of Glass Fiber Composties (유리섬유복합재료의 재료특성에 관한 실험적 연구)

  • Park, Jong-Myen;Seo, Hyun-Su;Kwon, Min-Ho;Lim, Jeong-Hee
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.16-21
    • /
    • 2014
  • In the study, tensile, compression and in-plane tests about longitudinal direction of glass fiber were performed. Also, to obtain the material properties of GFRP fabric composite, tensile test was performed. All test were performed by the test method of ASTM. Maximum compressive strength was smaller than the maximum tensile strength at the longitudinal direction test results. Elastic modulus of the tensile and compressive was almost similar at the compression test results in the longitudinal direction. Based on the GFRP fabric composite test results, GF91 was showed good performance at maximum compressive, maximum strain and elastic modulus.

Performance Analysis and Prior-Treatment of Heat Pump System with Low-Temperature Water Heat Source (저온수열원이용 열펌프시스템의 전처리 및 성능분석)

  • Park, Seong-Ryong;Chang, Ki-Chang;Lee, Sang-Nam;Ra, Ho-Sang;Park, Jun-Tack
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.258-263
    • /
    • 2000
  • River water is higher in temperature than the surrounding environment during the winter. It is highly suitable a heat source for heat pump system. Despite its suitability, however, it is not widely used, due to its fouling and corrosive nature in heat exchanger tubes of evaporator. It is designed prior-treatment system which come into direct contact with the river water, such as auto-seamer, ozone generator for bactericidal test and auto-cleaning system. And it is analyzed treatment effects for its operation. It is designed two-stage compression heat pump system using R-134a with heating load 35.16kW, ad analyzed its performance. As a result it is obtained 3.08 COP when mid-point pressure is 1,200kPa, and bypass ratio of flowing refreigerant to high-stage compressor is 25.1%

  • PDF

Sign Language Shape Recognition Using SOFM Neural Network (SOFM 신경망을 이용한 수화 형상 인식)

  • Park, Kyung-Woo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.38-42
    • /
    • 2010
  • 인간은 정보전달을 위하여 언어 이외에 동작, 표정과 같은 비언어적인 수단을 이용한다. 이러한 비언어적인 수단을 정확히 분석 할 수 있다면 인간과 컴퓨터간의 자연스럽고 지적인 인터페이스를 구축할 수 있게 된다. 본 논문은 별도의 센서를 부착하지 않은 단일 카메라 환경에서 손 형상을 입력정보로 사용하여 손 영역만을 분할한 후 자기 조직화 특징 지도(SOFM: Self Organized Feature Map) 신경망 알고리즘을 이용하여 손 형상을 인식함으로서 수화인식을 위한 보다 안정적이며 강인한 인식 시스템을 구현하고자 한다. 제안 방법으로는 피부색 정보를 이용하여 배경으로부터 손 영역만을 추출한 후 추출된 손 영역의 형상을 인식한다(전처리과정으로 모델이미지의 사이즈와 압축 및 컬러에 대한 정보를 정규화 시켰다). 또한 인식 효율을 높이기 위해 SOFM 신경망 알고리즘을 적용함으로서 보다 안정적으로 손 형상을 인식할 수 있게 되었으며, 손 형상 인식률에 대한 안전성과 정확성을 향상시킬 수 있었다. 그리고 인식된 손 형상의 의미를 텍스트로 보여줌으로서 사용자의 의사를 정확하게 전달할 수 있다.

Thickness Effect on the Compressive Strength of T800/924C Carbon Fibre-Epoxy Laminates (T800/924C 탄소-에폭시 복합재판의 압축강도에 대한 두께 효과)

  • Lee, J.;C. Kong;C. Soutis
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.7-17
    • /
    • 2004
  • In this study, the effect of laminate thickness on the compressive behaviour of composite materials is investigated through systematic experimental work using the stacking sequences, $[O_4]_{ns},{\;}[45/0/-45/90]_{ns}$ and $[45_n/0_n/-45_n/90_n]_s$ (n=2 to 8). Parameters such as fibre volume fraction, void content, fibre waviness and interlaminar stresses, influencing compressive strength with increasing laminate thickness are also studied experimentally and theoretically. Furthermore the stacking sequence effects on failure strength of multidirectional laminates are examined. For this purpose, two different scaling techniques are used; (1) ply-level technique $[45_n/0_n/-45_n/90_n]s$ and (2) sublaminate level technique $[45/0/-45/90]_{ns}$. An apparent thickness effect existes in the lay-up with blocked plies, i.e. unidirectional specimens ($[O_4]_{ns}) and ply-level scaled multidirectional specimens ($[45_n/0_n/-45_n/90_n]_s$). Fibre waviness and void content are found to be main parameters contributing to the thickness effect on the compressive failure strength. However, the compressive strength of the sublaminate level scaled specimens ($[45/0/-45/90]_{ns}$) is almost unaffected regardless of the specimen thickness (since ply thickness remains constant). From the investigation of the stacking sequence effect, the strength values obtained from the sublaminate level scaled specimens are slightly higher than those obtained from the ply level scaled specimens. The reason for this effect is explained by the fibre waviness, void content, free edge effect and stress redistribution in blocked $0^{\circ}$ plies and unblocked $0^{\circ}$ plies. The measured failure strengths are compared with the predicted values.

Fabrication of lightweight geopolymer based on the IGCC slag (IGCC 용융 슬래그를 이용한 경량 지오폴리머 제조)

  • Park, Soo-bin;Kim, Kang-duk;Kang, Seung-gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.319-326
    • /
    • 2017
  • In this study, a lightweight geopolymer was prepared using by slag discharged from IGCC (Integrated Gasification Combined Cycle) power plant and its physical properties, the density and compressive strength, were analyzed as a function of the concentration of alkali activators, W/S ratio and aging times. Also the possibility of applying it to lightweight materials by adding Si sludge as a foaming agent to the geopolymerg was investigated. In particular, a complex composition of alkali activator and a pre-curing process were applied to improve the strength properties of lightweight geopolymers. While the compressive strength of the lightweight geopolymer using a single activator was 9.5 MPa, the specimen made with a complex composition of alkali activator had compressive strength of 2~5 times higher. In addition, the lightweight geopolymer with pre-curing process showed a compressive strength value of 18~48 % higher than that of specimen made with no precuring process. In this study, by using a complex activator and a pre-curing process. the maximum compressive strength of lightweight geopolymer was obtained as 40 MPa (The specimen was aged for 3 days and had density of $1.83g/cm^3$), which is comparable to cement concrete. By analyzing the crystal phase and microstructure of geopolymers obtained in this study using by XRD and SEM, respectively, it was confirmed that the flower-bud-like zeolite crystal was homogeneously distributed on the surface of the C-S-H gel (sodium silicate hydrate gel) in the geopolymer.

Estimation of buckling and collapse behaviour for continuous stiffened plate under combined transverse axial compression and lateral pressure (조합하중을 받는 연속보강판의 좌굴 및 붕괴거동 평가)

  • Park, Joo-Shin;Choi, Joung-Hwan;Hong, Kwan-Young;Lee, Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Estimation of the buckling and ultimate strength of a continuous stiffened plate subjected to combined transverse compression and lateral pressure is of high importance to ensure the safety of ship structures, particularly for the bottom plating under a deep draft condition For example, bottom plating of bulk carriers is subjected to transverse thrust caused by the bending of double bottom structure and the direct action of pressure on the side shells. Most of experimental tests, theoretical approach and numerical researches have been performed on the buckling and ultimate strength behaviour of plates or stiffened plates under combined compression and lateral pressure. With regard to stiffened panels, however, most of studies have been concerned with the load conditions of combined longitudinal thrust and lateral pressure, while fewer studies have been performed for the combined transverse thrust and lateral pressure. In addition, the previous researches are mainly concerned with an isolated rectangular plate simply supported along the all edges, whereas actual ship plating is continuous across the transverse frames and heavy girders. In the present paper, a series of elastoplastic large deflection FEA on a continuous stiffened plate is performed and then clarify the characteristic of collapse mode and explain the effect of transverse compression.

Prestudy on Expendable Turbine Engine for High-Speed Vehicle (초고속 비행체용 소모성 터빈엔진 사전연구)

  • Kim, YouIl;Hwang, KiYoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.97-102
    • /
    • 2013
  • A prestudy on expendable turbine engine for high-speed vehicle was conducted. After two possible mission profiles were established to decide the engine requirements, design point analysis was performed with the values of design parameter which were obtained from similar class engines, references, etc. The results showed that specific net thrust and specific fuel consumption with turbine inlet temperature of 3,600 R are 2,599.4 ft/s and 1.483 lb/(lb*h) respectively at the flight condition of sea level, Mach 1.2. It was also found that major design parameters for determining maximum net thrust were turbine inlet temperature for low supersonic and transonic flight speed and compressor exit temperature for high supersonic flight speed from the results of performance analysis on the two possible mission profiles. In addition, simple turbojet engine with an axial compressor, a straight annular combustor, an one stage axial turbine and a fixed throat area converge-diverge exhaust nozzle was proposed as the configuration of simple low cost lightweight turbine engine.

A Numerical Simulation of Wave Run-up Around Circular Cylinders in Waves (파랑중 원형 실린더 주위 Wave Run-up 시뮬레이션)

  • Cha, Kyung-Jung;Jung, Jae-Hwan;Seo, Kwang-Cheol;Koo, Bon-Guk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.750-757
    • /
    • 2016
  • This study presents the wave run-up height around single and multiple surface-piercing cylinders according to wave period and steepness. In order to simulate 3D incompressible viscous two-phase turbulent flow, the present study employed a volume of fluid (VOF) method with realizable $k-{\varepsilon}$ turbulence model based on commercial Computational Fluid Dynamics (CFD) software, "STAR-CCM". The wave periods at model scale were 1.269s and 1.692s for a single cylinder and 1.716s for multiple cylinders. In each case, wave steepness of has 1/30 and 1/16 were used, respectively. Consequently, the results for wave run-up height with regard to wave steepness and period were compared with those of relevant previous experimental studies. The numerical simulation results showed a good qualitative agreement with experiments.