• Title/Summary/Keyword: 1″ micro storage

Search Result 163, Processing Time 0.024 seconds

SMEDDS (Self-MicroEmulsifying Drug Delivery System) As An Intraurethral Prostaglandin E1 Delivery System

  • Lee, Sang-Kil;Jeon, Sang-Ok;Kang, Jae-Seon;Lee, Jae-Hwi;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.5
    • /
    • pp.291-295
    • /
    • 2007
  • Prostaglandin $E_1\;(PGE_1)$ was formulated as two self-microemulsifying drug delivery systems (SMEDDS) composed of Cremophor $EL^{(R)}$ or Cremophor $ELP^{(R)}$ as a surfactant, ethanol as a cosurfactant and Labrafac $CC^{(R)}$ as an oil to develop liquid preparation for the treatment of erectile dysfunction. In pseudo-ternary phase diagram, viscous gel area and microemulsion area were defined. In the measurement of viscosity, the viscosity of two formulations increased gradually upon the addition of water and it decreased from the water contents over 40%. With excessive water, the present systems formed a microemulsion spontaneously. From these results, rte could expect that the present liquid $PGE_1$ SMEDDS formulations might stay within the urethra in the viscous state when contacting the moisture of the urethra and can be easily eliminated by urination. In long-term stability study, we could select one formulation more stable at the shelf storage condition of $4^{\circ}C$.

Production of Probiotic Mango Juice by Fermentation of Lactic Acid Bacteria (유산균 발효에 의한 프로바이틱 망고 주스의 생산)

  • Reddy, Lebaka Veeranjaneya;Min, Ju-Hee;Wee, Young-Jung
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.2
    • /
    • pp.120-125
    • /
    • 2015
  • In this study, the probiotification of mango juice was carried out by lactic acid bacteria fermentation. Mango juice fermentation was performed at 30℃ for 72 h under micro-aerophilic conditions. The microbial population, pH, titrable acidity, sugar, and organic acid metabolism were measured during the fermentation period and the viability of the strains was determined under the storage conditions at 4℃ for 4 weeks. The lactic acid bacteria reduced the pH to as low as 3.2 from 4.5 within 72 h of fermentation. The substrate concentration was reduced to 5.8% (w/v) from 12% (w/v). Lactobacillus plantarum exhibited the fastest utilization of sugar and reduction of pH in the mango juice when compared to the other strains used. The viability of the cells was maintained at 1.0 × 107 CFU/ml throughout the storage period. From this investigation, it can be concluded that mango juice is suitable for the production of probiotic beverage.

Lightweight Model for Energy Storage System Remaining Useful Lifetime Estimation (ESS 잔존수명 추정 모델 경량화 연구)

  • Yu, Jung-Un;Park, Sung-Won;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.436-442
    • /
    • 2020
  • ESS(energy storage system) has recently become an important power source in various areas due to increased renewable energy resources. The more ESS is used, the less the effective capacity of the ESS. Therefore, it is important to manage the remaining useful lifetime(RUL). RUL can be checked regularly by inspectors, but it is common to be monitored and estimated by an automated monitoring system. The accurate state estimation is important to ESS operator for economical and efficient operation. RUL estimation model usually requires complex mathematical calculations consisting of cycle aging and calendar aging that are caused by the operation frequency and over time, respectively. A lightweight RUL estimation model is required to be embedded in low-performance processors that are installed on ESS. In this paper, a lightweight ESS RUL estimation model is proposed to operate on low-performance micro-processors. The simulation results show less than 1% errors compared to the original RUL model case. In addition, a performance analysis is conducted based on ATmega 328. The results show 76.8 to 78.3 % of computational time reduction.

A Study of Functional Jeolpyon Prepared with Silk Protein (Silk Protein을 첨가한 기능성 절편의 제조에 관한 연구)

  • 황영정;김경옥
    • Korean Journal of Human Ecology
    • /
    • v.7 no.1
    • /
    • pp.43-50
    • /
    • 2004
  • The purpose of this study is to reach silk protein added in differing amounts to Jeolpyon, Korean traditional rice cake, using rice powder as its primary material, estimation of the micro organism quality, physicochemical property, sensory evaluation and the property of storage period (20${pm} 5 ^{\circ}C$). In the physicochemical property, the content of proximate composition of rice powder was measured as 38.11% of moisture, 56.62% of total sugar, 5.11% of crude protein, 0.52% of crude lipid, 0.25% of ash. And the raw material of silk protein was measured as 6.61% of moisture, 91.22% of crude protein, 6.41% of crude lipid and 0.75% of ash. The pH of raw material for rice powder and silk protein Jeolpyon showed mild acidity as 6.41 and 6.23, respectively. In rice powder and silk protein, total free sugar contents was 0.89% and 0.02%, and total amino acids contents was 4.28% and 52.21 %, respectively. For sensory evaluation. color, taste, softness and adhesiveness were significantly acceptable in control and adding 1 % silk protein. Control and samples added 1$\sim$3% silk protein had high sensory score color in overall acceptance. In conclusion. Jeolpyon can be manufactured with nutritious Jeolpyon by adding silk protein.

  • PDF

Investigations on the Magneto-optical Properties of Bilayered Co/Ni Micro-patterned Anti-dot Arrays

  • Deshpande, N.G.;Zheng, H.Y.;Hwang, J.S.;Lee, S.J.;Lee, Y.P.;Rhee, J.Y.;Kim, K.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.251-251
    • /
    • 2012
  • A lot of studies are undergoing on the magneto-optical (MO) properties of patterned magnetic systems for the reason that they have potential application to information technology such as ultrahigh-speed computing. Moreover, they can be considered as the future candidates for high-density MO storage devices. Not only the technical aspects, but there have been also tremendous interests in studying their properties related to the fundamental physics. The MO Kerr-rotation effects (both in reflected and the diffracted modes) and the magnetic force microscopy (MFM) are very useful techniques to investigate the micromagnetic properties of such periodic structures. Hence, in this study, we report on the MO properties of bilayered Cobalt (Co)/ nickel (Ni) micro-patterned anti-dot arrays. Such a ferromagnetic structure was made by sequentially depositing co (40 nm)/Ni (5 nm) bilayer on a Si substrate. The anti-dot patterning with hole diameter of $1{\mu}m$ was done only on the upper Co layer using photolithography technique, while the Ni underlayer was kept uniform. The longitudinal Kerr rotation (LKR) of the zeroth- and the first-order diffracted beams were measured at an incidence of $30^{\circ}$ by using a photoelastic modulator method. The external magnetic field was applied perpendicularly to the reflected and the diffracted beams using an electromagnet capable of a maximum field of ${\pm}5$ kOe. Significantly, it was observed that the LKR of the first-order diffracted beam is nearly 4 times larger than that of the zeroth-order beam. The simulated results for the hysteresis loops matched qualitatively well with the experimentally obtained ones. In conjunction with the LKR, we also investigated the magnetic-domain structure by using a MFM system, which were analyzed to elucidate the origin of the enhanced MO rotation.

  • PDF

A Fiber Optic Sensor for Determination of 2,4-Dichlorophenol Based on Oxygen Oxidation Catalyzed by Iron(III) Tetrasulfophthalocyanine

  • Tong, Yilin;Li, Dapeng;Huang, Jun;Zhang, Cong;Li, Kun;Ding, Liyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3307-3311
    • /
    • 2013
  • A new fiber optical sensor was developed for the determination of 2,4-dichlorophenol (DCP). The sensor was based on DCP oxidation by oxygen with the catalysis of iron(III) tetrasulfophthalocyanine (Fe(III)PcTs). The optical oxygen sensing film with $Ru(bpy)_3Cl_2$ as the fluorescence indicator was used to determine the consumption of oxygen in solution. A lock-in amplifier was used for detecting the lifetime of the oxygen sensing film by measuring the phase delay change of the sensor head. The different variables affecting the sensor performance were evaluated and optimized. Under the optimal conditions (i.e. pH 6.0, $25^{\circ}C$, Fe(III)PcTs concentration of 0.62 mg/mL), the linear detection range and response time of the sensor are $1.0{\times}10^{-6}-9.0{\times}10^{-6}$ mol/L and 250 s, respectively. The sensor displays high selectivity, good repeatability and stability, and can be used as an effective tool in analyzing DCP concentration in practical samples.

Optimal Operating Method of PV+ Storage System Using the Peak-Shaving in Micro-Grid System (Micro-Grid 시스템에서 Peak-Shaving을 이용한 PV+ 시스템의 최적 운영 방법)

  • Lee, Gi-hwan;Lee, Kang-won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.1-13
    • /
    • 2020
  • There are several methods of peak-shaving, which reduces grid power demand, electricity bought from electricity utility, through lowering "demand spike" during On-Peak period. An optimization method using linear programming is proposed, which can be used to perform peak-shaving of grid power demand for grid-connected PV+ system. Proposed peak shaving method is based on the forecast data for electricity load and photovoltaic power generation. Results from proposed method are compared with those from On-Off and Real Time methods which do not need forecast data. The results also compared to those from ideal case, an optimization method which use measured data for forecast data, that is, error-free forecast data. To see the effects of forecast error 36 error scenarios are developed, which consider error types of forecast, nMAE (normalizes Mean Absolute Error) for photovoltaic power forecast and MAPE (Mean Absolute Percentage Error) for load demand forecast. And the effects of forecast error are investigated including critical error scenarios which provide worse results compared to those of other scenarios. It is shown that proposed peak shaving method are much better than On-Off and Real Time methods under almost all the scenario of forecast error. And it is also shown that the results from our method are not so bad compared to the ideal case using error-free forecast.

A Study of Long Term Recording Reserved Type Material by Using Glass Micro-structure (유리의 미세구조를 이용한 장기보존형 기록재료에 관한 연구)

  • Lee, Kang-Taek;Yoon, Duk-Ki;Chin, Hyun-Ju;Choi, Kwang-Hoon;Lee, Kyu-Ho;Kim, Hyun-Gyu;Ryu, Bong-Ki
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.777-781
    • /
    • 2006
  • Recently, there are a lot of study to alternate polycarbonate which is being used as storage material in CD, DVD. In this study, we alternated polycarbonate with glass. We observed the change of shape in a surface of the glass which was focused by Nd:YAG Laser. The change of shape and property was studied by thermal mechanical analysis (TMA), UV-Vis spectrometer, AFM and SEM. According to Laser power and quantity of additives, the Bump's size and shape are showed differently. In high energy, the Bump will be transformed into Pit. And also according to CTE, $T_d$ and absorption ratio of glass, difference between Bump and Pit is confirmed. From these investigation, we could control that the minimum size of bump which is more useful shape than pit's is about 1.3 $\mu$m, H 70 nm, and it is near same the spot size.

Characterization of the brittleness of hard rock at different temperatures using uniaxial compression tests

  • Chen, Guoqing;Li, Tianbin;Wang, Wei;Guo, Fan;Yin, Hongyu
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.63-77
    • /
    • 2017
  • The failure mechanism of a deep hard rock tunnel under high geostress and high geothermalactivity is extremely complex. Uniaxial compression tests of granite at different temperatures were conducted. The complete stress-strain curves, mechanical parameters and macroscopic failure types of the rock were analyzed in detail. The brittleness index, which represents the possibility of a severe brittleness hazard, is proposed in this paperby comparing the peak stress and the expansion stress. The results show that the temperature range from 20 to $60^{\circ}C$ is able to aggravate the brittle failure of hard rock based on the brittleness index. The closure of internal micro cracks by thermal stress can improve the strength of hard rock and the storage capacity of elastic strain energy. The failure mode ofthe samples changes from shear failure to tensile failure as the temperature increases. In conclusion, the brittle failure mechanism of hard rock under the action of thermal coupling is revealed, and the analysis result offers significant guidance for deep buried tunnels at high temperatures and under high geostress.

Probing of Microscale Phase-Change Phenomena Based on Michelson Interforometry (Michelson 간섭계를 응용한 미세 상변화 현상 계측)

  • Kim, Dong-Sik;Park, Hee-K.;Grigoropoulos, Costas P.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.348-353
    • /
    • 2001
  • Experimental schemes that enable characterization of phase-change phenomena in the micro scale regime is essential for understanding the phase-change kinetics. Particularly, monitoring rapid vaporization on a submicron length scale is an important yet challenging task in a variety of laser-processing applications, including steam laser cleaning and liquid-assisted material ablation. This paper introduces a novel technique based on Michelson interferometry for probing the liquid-vaporization process on a solid surface heated by a KrF excimer laser pulse (${\lambda}=248nm,\;FWHM=24\;ns$) in water. The effective thickness of a microbubble layer has been measured with nanosecond time resolution. The maximum bubble size and growth rate are estimated to be of the order of $0.1{\mu}m\;and\;1\;m/s$, respectively. The results show that the acoustic enhancement in the laser induced vaporization process is caused by bubble expansion in the initial growth stage, not by bubble collapse. This work demonstrates that the interference method is effective for detecting bubble nucleation and microscale vaporization kinetics.

  • PDF