• Title/Summary/Keyword: 1,4-naphthoquinone derivatives

Search Result 34, Processing Time 0.023 seconds

Naphthazarin Derivatives: Synthesis, Cytotoxic Mechanism and Evaluation of Antitumor Activity

  • You, Young-Jae;Zheng, Xiang-Guo;Kim, Yong;Ahn, Byung-Zun
    • Archives of Pharmacal Research
    • /
    • v.21 no.5
    • /
    • pp.595-598
    • /
    • 1998
  • The rate of the GSH conjugate formation, the inhibition of DNA topoisomerase-I and the cytotoxic activity against L1210 cells of the naphthoquinones showed the same order; 5,8-dimethoxy-1,4-naphthoquinone (DMNQ)>6-(1-hydroxyethyl)-DMNQ>2-(1-hydroxyethyl)-DMNQ; the steric hindrance of the substituents, particularly 2-substutuent, in reacting with cellular nucleophiles must be the main cause for lowering the bioactivities. Acetylation of 2-(1-hydroxyethyl)-DMNQ producing 2-(acetyloxyethyl)-DMNQ potentiated the bioactivities; 2-(-hydroxyethyl)-DMNQ did not react with GSH and the enzyme, and showed $ED_{50}$ of 0.146 mg/ml for the cytotoxcity. Furthermore, the acetylation 2-(1-hydroxyethyl)-DMNQ(T/C, 119%) enhanced the T/C values for the mice bearing S-180 tumor {T/C of 2-(1-acetyloxyethyl)-DMNQ, 276%]. It was assumed that the difference in bioactivities ensued by acetylation was based on the mechanism of the so-called bioreductive alkylation.

  • PDF

Computational Optimization of Bioanalytical Parameters for the Evaluation of the Toxicity of the Phytomarker 1,4 Napthoquinone and its Metabolite 1,2,4-trihydroxynapththalene

  • Gopal, Velmani;AL Rashid, Mohammad Harun;Majumder, Sayani;Maiti, Partha Pratim;Mandal, Subhash C
    • Journal of Pharmacopuncture
    • /
    • v.18 no.2
    • /
    • pp.7-18
    • /
    • 2015
  • Objectives: Lawsone (1,4 naphthoquinone) is a non redox cycling compound that can be catalyzed by DT diaphorase (DTD) into 1,2,4-trihydroxynaphthalene (THN), which can generate reactive oxygen species by auto oxidation. The purpose of this study was to evaluate the toxicity of the phytomarker 1,4 naphthoquinone and its metabolite THN by using the molecular docking program AutoDock 4. Methods: The 3D structure of ligands such as hydrogen peroxide ($H_2O_2$), nitric oxide synthase (NOS), catalase (CAT), glutathione (GSH), glutathione reductase (GR), glucose 6-phosphate dehydrogenase (G6PDH) and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) were drawn using hyperchem drawing tools and minimizing the energy of all pdb files with the help of hyperchem by $MM^+$ followed by a semi-empirical (PM3) method. The docking process was studied with ligand molecules to identify suitable dockings at protein binding sites through annealing and genetic simulation algorithms. The program auto dock tools (ADT) was released as an extension suite to the python molecular viewer used to prepare proteins and ligands. Grids centered on active sites were obtained with spacings of $54{\times}55{\times}56$, and a grid spacing of 0.503 was calculated. Comparisons of Global and Local Search Methods in Drug Docking were adopted to determine parameters; a maximum number of 250,000 energy evaluations, a maximum number of generations of 27,000, and mutation and crossover rates of 0.02 and 0.8 were used. The number of docking runs was set to 10. Results: Lawsone and THN can be considered to efficiently bind with NOS, CAT, GSH, GR, G6PDH and NADPH, which has been confirmed through hydrogen bond affinity with the respective amino acids. Conclusion: Naphthoquinone derivatives of lawsone, which can be metabolized into THN by a catalyst DTD, were examined. Lawsone and THN were found to be identically potent molecules for their affinities for selected proteins.

Color Alteration and Acaricidal Activity of Juglone Isolated from Caesalpinia sappan Heartwoods Against Dermatophagoides spp.

  • Lee, Chi-Hoon;Lee, Hoi-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1591-1596
    • /
    • 2006
  • Acaricidal effects of materials derived from Caesalpinia sappan heartwoods against Dermatophagoides farinae and D. pteronyssinus were assessed and compared with those evidenced by commercial benzyl benzoate and DEET. The observed responses varied according to dosage and mite species. The $LD_{50}$ values of the methanol extracts derived from C. sappan heartwoods were 6.13 and $5.44{\mu}g/cm^3$ against D. farinae and D. pteronyssinus, respectively. Furthermore, the ethyl acetate fraction derived from the methanol extract was approximately 8.71 more toxic than DEET against D. farinae, and 4.73 times more toxic against D. pteronyssinus. The biologically active constituent from the ethyl acetate fraction of C. sappan heartwood extract was purified via silica gel chromatography and high-performance liquid chromatography. The structure of the acaricidal component was analyzed by $GC-MS,\;^1H-NMR,\;^{13}C-NMR,\;^1H-^{13}C\;COSY-NMR$, and DEPT-NMR spectroscopy, and identified as juglone (5-hydroxy-l,4-naphthoquinone). Based on the $LD_{50}$ values of juglone and its derivatives, the most toxic compound against D. farinae was juglone ($0.076{\mu}g/cm^3$), followed by benzyl benzoate ($9.143{\mu}g/cm^3$) and 2methyl-l,4-naphthoquinone ($40.0{\mu}g/cm^3$). These results indicate that the acaricidal activity of C. sappan heartwoods is likely to be the result of the effects of juglone. Additionally, juglone treatment was shown to effect a change in the color of the cuticles of house dust mites, from colorless-transparent to dark brownish-black. Accordingly, as a naturally occurring acaricidal agent, C. sappan heartwood-derived juglone should prove to be quite 'useful as a potential control agent, lead compound, and house dust mite indicator.

Facile Synthesis of Mollugin by Kinetic Control and anti-HCV (Hepatitis C Virus) Activity of Its Analogues

  • Choi, Da Hye;Lee, Na Ri;Kim, Cheol Gi;Kim, Jong Woo;Lee, Sang Wook;Jun, Jong-Gab
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3232-3238
    • /
    • 2014
  • Mollugin has been reported to have various biological activities including antineoplastic, antitumor, antiviral against the hepatitis B virus, anti-aging and antimutagenic activities. An effective and concise synthesis of mollugin in two steps including kinetic control from the cheap starting material 1,4-naphthoquinone has been introduced, and mollugin derivatives thus prepared are screened for their inhibition ability against the hepatitis C virus (HCV) and the dihydrobenzochromene structure might be an additional anti-HCV agent as a new leading compound.