• Title/Summary/Keyword: 1,2 dichlorobenzene

Search Result 53, Processing Time 0.034 seconds

Effect of Organic Solvent-Modification on the Electrical Characteristics of the PCBM Thin-Film Transistors on Plastic substrate (플라스틱 기판상에 제작된 PCBM 박막 트랜지스터의 전기적 특성에 대한 유기 용매 최적화의 효과에 대한 연구)

  • Hyung, Gun-Woo;Lee, Ho-Won;Koo, Ja-Ryong;Lee, Seok-Jae;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.199-204
    • /
    • 2012
  • Organic thin-film transistors (OTFTs) have received considerable attention because their potential applications for nano-scale thin-film structures have been widely researched for large-scale integration industries, such as semiconductors and displays. However, research in developing n-type materials and devices has been relatively shortage than developing p-type materials. Therefore, we report on the fabrication of top-contact [6,6]-phenyl-C61-butyricacidmethylester (PCBM) TFTs by using three different solvent, o-dichlorobenzene, toluene and chloroform. An appropriate choice of solvent shows that the electrical characteristics of PCBM TFTs can be improved. Moreover, our PCBM TFTs with the cross-linked Poly(4-vinylphenol) dielectric layer exhibits the most pronounced improvements in terms of the field-effect mobility (${\sim}0.034cm^2/Vs$) and the on/off current ratio (${\sim}1.3{\times}10^5$) for our results. From these results, it can be concluded that solvent-modification of an organic semiconductor in PCBM TFTs is useful and can be extended to further investigations on the PCBM TFTs having polymeric gate dielectrics. It is expected that process optimizations using solution-processing of organic semiconductor materials will allow the development of the n-type organic TFTs for low-cost electronics and various electronic applications.

Removal of Chlorinated Organic Compounds in Flue Gas by Activated Carbon Injection in a Semi-Drying Reactor (반건식 반응기에서의 활성탄 혼합주입에 의한 소각로 배가스중의 유기 염소계 화합물의 제거 공정 연구)

  • Choo, Changupp;Whang, Jaedong;Lee, Joyoung;Cho, Chulhoon;Shin, Byungchul
    • Clean Technology
    • /
    • v.6 no.2
    • /
    • pp.121-127
    • /
    • 2000
  • There are several kinds of hazardous materials in incinerator flue gas, such as particulate matter, acid gas, heavy metal, dioxin, etc. The activated carbon adsorption is considered as one of the methods removing dioxin from flue gas. Without any additional equipment and facilities, the activated carbon was mixed with lime and sprayed in the semi-drying reactor of an incinerator and filtered in the bag filter, and its efficiency of removing hazardous organic material was investigated. 1,2-dichlorobenzene (o-DCB) was used as a precursor material of dioxin and the effects of the activated carbon amount, the operating temperature of the reactor, and the atomizer r.p.m were measured and analyzed. Experimental results showed that the optimum outlet temperature of the reactor was $145^{\circ}C$ considering the performance of the bag filter, and the adsorption performance improved with the increase of the atomizer r.p.m. Also the performance of removing o-DCB in the bag filter is higher than of the semi-drying reactor.

  • PDF

Characteristics of VOCs Emission According Interior Finish Materials and Working Phases of New Apartments (신축 아파트의 실내 마감재 변경 및 시공단계별 휘발성유기화합물 발생 특성)

  • Pang, Seung-Ki;Cho, Woo-Jin;Sohn, Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.486-492
    • /
    • 2006
  • In this research, IAQ is measured to evaluate the emission performance of VOCs in three new apartment houses finished by totally EFMs (Environmental Friendly Material), partially installed EFMs and general materials. Among various VOCs, Target pollutants for the IAQ measurement are benzene, ethylbenzene, toluene, xylene, 1,4-Dichlorobenzene and formaldehyde. The measurement is conducted one day after each interior finishing material is worked over by construction schedule. The result of this research concluded that (1) Except toluene, the concentration levels of each pollutant did not exceed the national IAQ standards in all test residences, (2) As the interior finishing work schedule, A toluene level peaked when the furniture installing was ended. (3) The toluene concentration level of the house installed general interior materials as the non-EFMs furniture was one and half higher than other houses. Consequently, installing. the furniture made by EFMs is one of effective methods to improve the IAQ for new apartment houses.

Synthesis and Photovoltaic Properties of New π-conjugated Polymers Based on 2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline (2,3-Dimethyl-5,8-dithiophen-2-yl-quinoxaline을 기본 골격으로 한 새로운 고분자 물질의 합성 및 광전변환특성)

  • Shin, Woong;Park, Jeong Bae;Park, Sang Jun;Jo, Mi Young;Suh, Hongsuk;Kim, Joo Hyun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • Poly[2,3-dimethyl-5,8-dithiophene-2-yl-quinoxaline-alt-9,9-dihexyl-9H-fluorene] (PFTQT) and poly[2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline-alt-10-hexyl-10H-phenothiazine (PPTTQT) based on 2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline weresynthesized by Suzuki coupling reaction. All polymers were soluble in common organic solvents such as chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran (THF) and toluene. The maximum absorption wavelength and band gap of PFTQT were 440 nm and 2.30 eV, and PPTTQT were 445 nm and 2.23 eV, respectively. The HOMO and LUMO energy level of PFTQT were -6.05 and -3.75 eV, and PPTTQT were -5,89 and -3.66 eV, respectively. The organic photovoltaic devices based on the blend of polymer and PCBM (1 : 2 by weight ratio) were fabricated. Efficiencies of devices were 0.24% (PFTQT) and 0.16% (PPTTQT), respectively. The short circuit current density ($J_{sc}$), fill factor (FF), and open circuit voltage ($V_{oc}$) of the device with PFTQT were $0.97mA/cm^2$, 29% and 0.86 V, and the device based on PPTTQT were $0.80mA/cm^2$, 28% and 0.71 V, 31% and 0.71 V, respectively, under air mass (AM) 1.5 G and 1 sun condition ($100mA/cm^2$).

Solution Processed Single Walled Carbon Nanotubes Transparent Conducting Films (투명전도막을 위한 용해 처리된 단일막 탄소나노튜브)

  • Manivannan, S.;Jeong, Il-Ok;Ryu, Je-Hwang;Jang, Jin;Park, Kyu-Chang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.45-45
    • /
    • 2008
  • In recent years, new materials and technology has been developed using single-walled carbon nanotubes (SWCNTs) as an alternative to indium tin oxide (ITO) to fulfil the requirements towards novel technological drive. These technologies offer products having a broad range of conductivity, excellent transparency, neutral color tone, good adhesion, abrasion resistance as well as mechanical robustness. In addition, SWCNTs can be solution processed to replace the sophisticated vacuum techniques at high temperatures. In the present work, transparent conducting films were fabricated from the purified SWCNTs. Dispersion of purified SWCNTs was accomplished in 1,2-dichlorobenzene without using surfactants or polymers following ultrasonic process. We achieved coating of nanotubes film on poly ether suiphone (PES) for an average sheet resistance ~110 ${\Omega}/{\Box}$ of optical transmittance 80% at 550 nm. Conventional spin coating method was followed to fabricate films from the purified and dispersed nanotubes solution. The results will be presented.

  • PDF

Properties of bulk-hetro junction polymer solar cells with P3HT:PCBM active layer (P3HT:PCBM의 고분자 유기박막태양전지의 특성연구)

  • Jang, Seong-Kyu;Choi, Jae-Young;Kim, Kun-Ho;Gong, Su-Cheol;Chang, Ho-Jung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.488-490
    • /
    • 2010
  • 최근 심각한 환경오염 문제와 화석 에너지 고갈로 차세대 청정 에너지 개발에 대한 중요성이 증대되고 있다. 그중에서 태양정지는 공해가 적고, 자원이 무한적이며 반 영구적인 수명을 가지고 있어 미래에너지 문제를 해결할 수 있는 에너지원으로 기대되고 있다. 본 연구에서는 P3HT(regioregular poly(3-hexylthiophene))와 PCBM(fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester)을 전자 도너와 억셉터 물질을 하나의 브랜드로 광 활성층을 형성하는 BHJ(bulk hetero junction)구조를 갖는 고분자 유기 박막 태양전지를 각각 Toluene, Mono-Chlorobenzene, Dichlorobenzene에 $60^{\circ}C$, 200rpm으로 약 12시간동안 1wt%로 교반(Stirring)한 후에 중량비(1:1 wt%)로 혼합하여 스핀코팅(Spin-coating)으로 제작하였고, 완성된 소자의 광활성층 면적은 0.04cm2이며, $150^{\circ}C$에서 후속 열처리 공정을 통해 특성 향상이 측정 되었다. 태양전지 소자 구조는 Glass / ITO / PEDOT:PSS / P3HT : PCBM / Al이다. 전류-전압, FF(Fill Factor), 변환효율 측정을 위해 solar simulator를 AM1.5 조건(100 mW/cm2)으로 이용하였으며, 소자의 최대 전류밀도는 12mA/$cm^2$, 개방전압은 0.566V이고 F.F(Fill Factor)는 55.2%이고 변환효율은 3.7%이다. 후속 열처리후 더욱 좋은 성능을 갖게 되었고, 최대 효율은 Dichl orobenzene일 때 이다.

  • PDF

Synthesis, Photovoltaic Properties and Side-chain Effect of Copolymer Containing Phenothiazine and 2,1,3-Benzothiadiazole (Phenothiazine과 2,1,3-Benzothiadiazole을 포함한 Copolymer의 합성 및 Side-chain 치환에 따른 Photovoltaic 특성 연구)

  • Yun, Dae-Hee;Yoo, Han-Sol;Seong, Ki-Ho;Lim, Jeong-Ho;Park, Yong-Sung;Wo, Je-Wan
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.487-496
    • /
    • 2014
  • In this study, three kinds of polymers based on phenothiazine-benzothiadiazole were synthesized by a Suzuki coupling reaction, and the various side-chains were substituted at the nitrogen of phenothiazine. The optical and electrochemical properties of synthesized polymers were analyzed. The results indicate that their absorption ranged from 300 to 700 nm, and also confirmed the ideal highest occupied molecular orbital (HOMO) energy level was about -5.4 eV with low band-gap energy. Photovoltaic devices were fabricated using a photoactive layer composed of a blended solution of the polymer and $PC_{71}BM$ in ortho-dichlorobenzene The device with P2HDPZ-bTP-OBT containing the branched side-chain and long chain showed the best performance; the maximum power conversion efficiency of this device was 2.4% (with $V_{OC}$ : 0.74 V, $J_{SC}$ : $6.9mA/cm^2$, FF : 48.0%).

Origin of Flavor Compounds in Canned Tuna and Their Relation to Quality (참치 통조림 중 향미 물질의 기원과 품질)

  • Kim, Mu-Nam;Lindsay, R.C.
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.6
    • /
    • pp.731-737
    • /
    • 1992
  • The specific attributes of aroma quality of canned tuna meat were investigated before and during refrigerated storage. Fresh, cooked tuna, beefy and meaty flavor notes of canned tuna meat were changed to card-boardy(1 week storage), oxidized fat-like(2 weeks storage), fatty acid-like and heavy oxidized fat-like(3 weeks storage), and then moldy and painty(4 weeks storage) flavor notes during storage in refrigerator at $4^{\circ}C.$ More than 126 peaks of volatile compounds collected from canned tuna meat were separated on Carbowax 20M capillary column of gas chromatographic analysis. Of the peaks, 54 compounds were identified by mass spectral data, matching $I_E$ values, and sniffing the effluent of each peak from GC detector. The contents of many low molecular weight compounds eluted with early retention times were decreased, whereas some other new compounds eluted with longer retention time were formed during storage. The compounds increased up to 3 weeks of storage and then decreased at extended storage time(4 weeks) were 1-penten-3-ol, 3-penten-2-ol, heptanal, limonene, 1-pentanol, octanal, 1-hexanol, nonanal, 2-octanone, 2-nonanone, 1-heptanol, benzaldehytde and some methyl substituted benzenes. p-Thiocresol, 2-chlorophenol, and 2-heptylthiophene were formed after 4 weeks of storage, but not detected in fresh canned tuna. Therefore, these compounds could be used as indicators for the quality changes during refrigerated storage.

  • PDF

Permeation Characteristics of Hazardous Substances in Tattoo Dye using Franz Diffusion Cells (Franz Diffusion Cell을 이용한 문신용 염료 내 유해물질의 피부 투과특성 연구)

  • Park, Kyo-Hyun;Jung, Se-Hoon;Shin, Ho-Sang;Kim, Bae-Hwan
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.1
    • /
    • pp.61-70
    • /
    • 2016
  • Objectives: The purpose of this study is to determine the exposure risk to tattoo components by analyzing skin absorption using the in vitro method. Tattoos are commonly used for cosmetic purposes, and the skin of not only the operator but of the people who are undergoing the cosmetic procedure is continuously exposed to hazardous chemicals. Methods: Skin permeation risk determination was conducted by the in vitro Franz diffusion cell method according to the ingredient types of tattoo dyes, such as volatile organic compounds (VOCs), non-volatile organic compounds and heavy metals, using hairless mouse full skin and human cadaver epidermis. Results: The major components with good skin penetration for each type of tattoo dye ingredient were clarified. Among the tatto dye ingredients, 1,2-Dichlorobenzene, Zn, Al, Pb and Ti showed good skin penetration. Most of the skin transmission rates were higher in hairless mouse full skin than in human cadaver epidermis. Conclusion: A possible exposure risk to hazardous substances in tattoo dyes was confirmed from this study. These results are expected to provide a positive contribution to the establishment of management regulations for tattoo dyes.

Synthesis and Characterization of π-Conjugated Polymer Based on Phthalimide Derivative and its Application for Polymer Solar Cells (프탈이미드 유도체를 기본으로 하는 공액고분자의 합성과 특성, 그리고 태양전지의 적용)

  • Do, Thu Trang;Ha, Ye Eun;Kim, Joo Hyun
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.694-701
    • /
    • 2013
  • A new copolymer named T-TI24T (poly((5,5-(2-butyl-5,6-bisdecyloxy-4,7-di-thiophen-2-yl-isoindole-1,3-dione))- alt-(2,5-thiophene))) based on phthalimide derivative and thiophene is synthesized by the Stille-coupling reaction. The polymer shows relatively high number average molecular weight of 86500 g/mol with good solubility in common organic solvents such as chloroform, 1,2-dichlorobenzene, and toluene and is thermally stable up to $380^{\circ}C$. Besides, it possesses a relatively low highest occupied molecular orbital (HOMO) energy level of -5.33 eV, promising the high open circuit voltage ($V_{oc}$) for photovoltaic applications. Active layer solution of polymer T-TI24T-as a donor and (6)-1-(3-(methoxycarbonyl)- {5}-1-phenyl[5,6]-fullerene (PCBM)-as an acceptor in different weight ratios is applied to fabricate the polymer solar cell devices. The ratio of polymer/PCBM affects the solar cell efficiency and the best performance exhibits in the device with polymer/PCBM = 1:3 (w/w), which shows a power conversion efficiency (PCE) of 0.199% and a $V_{oc}$ of 0.99 V, respectively. Even though the device shows the very low PCE, the $V_{oc}$ is higher than that of well known bulk heterojunction type solar cell based on P3HT:PC61BM (c.a. 0.5 V).