• Title/Summary/Keyword: .RuO$_2$ electrode

Search Result 131, Processing Time 0.03 seconds

Formation and stability of a ruthenium-oxide thin film made of the $O_2$/Ar gas-mixture sputtering

  • Moonsup Han;Jung, Min-Cherl;Kim, H.-D.;William Jo
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.5 no.2
    • /
    • pp.47-51
    • /
    • 2001
  • To obtain high remnant polarization and good crystalinity of ferroelectric thin films in non-volatile memory devices, the high temperature treatment in oxygen ambient is inevitable. Severe problems that occur in this process are oxygen diffusion into substrate, oxidation of electrode and buffer layer, degradation of microstructure and so on. We made ruthenium dioxide thin film by reactive sputtering with oxygen and argon mixture atmosphere. Comparing quantitatively the core-level spectra of Ru and RuO$_2$ obtained by x-ray photoelectron spectroscopy(XPS), we found that chemical state of RuO$_2$ is very stable and of good resistance to oxygen diffusion and oxidation of adjacent layers. It opens the use of RuO$_2$ thin film as a multifunctional layer of good conducting electrode and resistive barrier for the diffusion and the oxidation. We also suggest a correct understanding of Ru 3d core-level spectrum for RuO$_2$ based on the scheme of final state screening and charge transfer satellites.

  • PDF

Electrochemical Characteristics of Supercapacitor Based on Amorphous Ruthenium Oxide In Aqueous Acidic Medium (비정질 루테늄 산화물을 사용한 수계 Supercapacitor의 전기화학적 특성)

  • Choi, Sang-Jin;Doh, Chil-Hoon;Moon, Seong-In;Yun, Mun-Su;Yug, Gyeong-Chang;Kim, Sang-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 2002
  • A supercapacitor was developed using an amorphous ruthenium oxide material. The electrode of supercapacitor was prepared using an amorphous ruthenium oxide, which was synthesized from ruthenium trichloide hydrate$(RuCl_3{\cdo5}xH_2O)$. Thin film of tantalum was used as a current collector because it had wide. potential window characteristics than titanium and 575304 materials. A supercapacitor was assembled with ruthenium oxide as an electrode active material and 4.8M sulfuric acid solution as an electrolyte. The specific capacitance of the electrode was tested by a cyclic voltammetry using a half cell. The maximum differential specific capacitances during the oxidative and the reductive scans were 710 and $645\;F/g-RuO_2{\cdot}nH_2O$, respectively. The average specific capacitance was $521\;F/g-RuO_2{\cdot}nH_2O$. The assembled supercapacitor was protonated to the potential level of 0.5V vs. SCE. Super-capacitor, which was adjusted to the appropriate protonation level, had the specific capacitance of $151\;F/g-RuO_2{\cdot}nH_2O$ based on the concept of full cell.

Properties of $RuO_2$ Thin Films for Bottom Electrode in Ferroelectric Memory by Using the RF Sputtering (RF Sputtering 법으로 제작한 강유전체 메모리의 하부전극용$RuO_2$ 박막의 특성에 관한 연구)

  • 강성준;정양희
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.1127-1134
    • /
    • 2000
  • $RuO_2$ thin films are prepared by RP magnetron reactive sputtering and their characteristics of crystalliBation,microstructure, surface roughness and resistivity are studied with various O2/(Ar+O2)ratios and substrate temperatures. As O2/(Ar+O2) ratio decreases and substrate temperature increases, the preferred growing plane of$RuO_2$ thin films are changed from (110) to (101) plane. With increase of the 021(Ar+O2) ratio from 2075 to 50%, the surface roughness and the resistivity of $RuO_2$ thin films increase from 2.38nm to 7.81nm, and from $103.6 \mu\Omega-cm\; to \; 227 \mu\Omega-cm$, respectively, but the deposition rate decreases from 47nm/min to 17nm/min. On the other hand, as the substrate temperature increases from room temperature to$500^{\circ}C$, resistivity decreases from $210.5 \mu\Omega-cm\; to \; 93.7\mu\Omega-cm$. $RuO_2$ thin film deposited at $300^{\circ}C$ shows a excellent surface roughness of 2.38 m. As the annealing temperature increases in the range between $400^{\circ}C$ and $650^{\circ}C$, the resistivity decreases because of the improvement of crystallinity. We find that RuO$_2$ thin film deposited at 20% of 02/(Ar+O2) ratio and $300^{\circ}C$ of substrate temperature shows excellent combination of surface smoothness and low resistivity so that it is well qualified for bottom electrode for ferroelectric thin films.

  • PDF

Inactivation of Legionella pneumophila by Electrochemical Disinfection (전기화학적 소독에 의한 Legionella pneumophila 불활성화)

  • Park, Young-Seek;Kim, Dong-Seog
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.613-619
    • /
    • 2007
  • This study has carried out a performance of dimensionally stable anode for the purpose of disinfection of Legionella pneumophila in water. Three kinds of electrode were prepared by plating and thermal deposition, which were coated by the oxides of Pt, Ru and Ir on Ti metal surface, respectively. The order of disinfection performance for Legionella pneumophila was Ru/Ti > Ir/Ti > Pt/Ti. Free Cl and $ClO_2$ generation of Ir/Ti electrode was higher than that of two electrodes. However, the concentrations of generated $H_2O_2$ and $O_3$ of the Ru/Ti electrode were highest among the three electrodes. The higher NaCl concentration was, the more oxidants was generated and disinfection effect was increased. However, optimum NaCl dosage was 0.0125% due to the regulation on the conductivity and $Cl^-$ concentration for the cooling water quality of air conditioning and refrigeration equipment. With the increase of current, oxidants was more generated and following disinfection effect was increased. The increase of electrode distance reduced oxidants generation due to the low electric power, and their disinfection effect was decreased accordingly.

Effect of pH in Sodium Periodate based Slurry on Ru CMP (Sodium Periodate 기반 Slurry의 pH 변화가 Ru CMP에 미치는 영향)

  • Kim, In-Kwon;Cho, Byung-Gwun;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.117-117
    • /
    • 2008
  • In MIM capacitor, poly-Si bottom electrode is replaced with metal bottom electrode. Noble metals can be used as bottom electrodes of capacitors because they have high work function and remain conductive in highly oxidizing conditions. In addition, they are chemically very stable. Among novel metals, Ru (ruthenium) has been suggested as an alternative bottom electrode due to its excellent electrical performance, including a low leakage of current and compatibility to high dielectric constant materials. Chemical mechanical planarization (CMP) process has been suggested to planarize and isolate the bottom electrode. Even though there is a great need for development of Ru CMP slurry, few studies have been carried out due to noble properties of Ru against chemicals. In the organic chemistry literature, periodate ion ($IO_4^-$) is a well-known oxidant. It has been reported that sodium periodate ($NaIO_4$) can form $RuO_4$ from hydrated ruthenic oxide ($RuO_2{\cdot}nH_2O$). $NaIO_4$ exist as various species in an aqueous solution as a function of pH. Also, the removal mechanism of Ru depends on solution of pH. In this research, the static etch rate, passivation film thickness and wettability were measured as a function of slurry pH. The electrochemical analysis was investigated as a function of pH. To evaluate the effect of pH on polishing behavior, removal rate was investigated as a function of pH by using patterned and unpatterned wafers.

  • PDF

Anisotropic Silicon Etching Using $RuO_2$ Thin Film as a Mask Layer by TMAH Solution ($RuO_2$를 마스크 층으로 TMAH에 의한 이방성 실리콘 식각)

  • 이재복;오세훈;홍경일;최덕균
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1021-1026
    • /
    • 1997
  • RuO2 thin film has reasonably good conductivity and stiffness and it is thought to substitute for the cantilever beam made up of Pt and Si3N4 double layers in microactuators. Therefore, anisotopic Si etching was performed using RuO2 thin film as a mask layer in 25 wt. % TMAH water solution. In the etching temperature ranging from 6$0^{\circ}C$ to 75$^{\circ}C$, the etch rates of all the crystallographic directions increased linearly as the etching temperature increased. The etch rate ratio(selectivity) of [111]/[100] which varied from 0.08 to 0.14, was not sensitive to temperature. The activation energies for [110] direction, [100] direction and [111] direction were 0.50, 0.66 and 1.04eV, respectively. RuO2 cantilever beam with a clean surface was formed at the etching temperatures of 6$0^{\circ}C$ and $65^{\circ}C$. But the damages due to formation of pin holes on RuO2 surface were observed beyond 7$0^{\circ}C$. The tensile stress of RuO2 thin films caused the cantilever bending upward. As a result, it was demonstrated that the formation of conducting oxide RuO2 cantilever beam which can replace the role of an electrode and supporting layer could be possible by TMAH solution.

  • PDF