• 제목/요약/키워드: -galactosidase

검색결과 669건 처리시간 0.024초

Luteolin inhibits H2O2-induced cellular senescence via modulation of SIRT1 and p53

  • Zhu, Ri Zhe;Li, Bing Si;Gao, Shang Shang;Seo, Jae Ho;Choi, Byung-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권4호
    • /
    • pp.297-305
    • /
    • 2021
  • Luteolin, a sort of flavonoid, has been reported to be involved in neuroprotective function via suppression of neuroinflammation. In this study, we investigated the protective effect of luteolin against oxidative stress-induced cellular senescence and its molecular mechanism using hydrogen peroxide (H2O2)-induced cellular senescence model in House Ear Institute-Organ of Corti 1 cells (HEI-OC1). Our results showed that luteolin attenuated senescent phenotypes including alterations of morphology, cell proliferation, senescence-associated 𝛽-galactosidase expression, DNA damage, as well as related molecules expression such as p53 and p21 in the oxidant challenged model. Interestingly, we found that luteolin induces expression of sirtuin 1 in dose- and time-dependent manners and it has protective role against H2O2-induced cellular senescence by upregulation of sirtuin 1 (SIRT1). In contrast, the inhibitory effect of luteolin on cellular senescence under oxidative stress was abolished by silencing of SIRT1. This study indicates that luteolin effectively protects against oxidative stress-induced cellular senescence through p53 and SIRT1. These results suggest that luteolin possesses therapeutic potentials against age-related hearing loss that are induced by oxidative stress.

Lactiplantibacillus plantarum LM1001 Improves Digestibility of Branched-Chain Amino Acids in Whey Proteins and Promotes Myogenesis in C2C12 Myotubes

  • Youngjin Lee;Yoon Ju So;Woo-Hyun Jung;Tae-Rahk Kim;Minn Sohn;Yu-Jin Jeong;Jee-Young Imm
    • 한국축산식품학회지
    • /
    • 제44권4호
    • /
    • pp.951-965
    • /
    • 2024
  • Lactiplantibacillus plantarum is a valuable potential probiotic species with various proven health-beneficial effects. L. plantarum LM1001 strain was selected among ten strains of L. plantarum based on proteolytic activity on whey proteins. L. plantarum LM1001 produced higher concentrations of total free amino acids and branched-chain amino acids (Ile, Leu, and Val) than other L. plantarum strains. Treatment of C2C12 myotubes with whey protein culture supernatant (1%, 2% and 3%, v/v) using L. plantarum LM1001 significantly increased the expression of myogenic regulatory factors, such as Myf-5, MyoD, and myogenin, reflecting the promotion of myotubes formation (p<0.05). L. plantarum LM1001 displayed β-galactosidase activity but did not produce harmful β-glucuronidase. Thus, the intake of whey protein together with L. plantarum LM1001 has the potential to aid protein digestion and utilization.

Induction of Nuclear Enlargement and Senescence by Sirtuin Inhibitors in Glioblastoma Cells

  • Kyoung B. Yoon;Kyeong R. Park;Soo Y. Kim;Sun-Young Han
    • IMMUNE NETWORK
    • /
    • 제16권3호
    • /
    • pp.183-188
    • /
    • 2016
  • Sirtuin family members with lysine deacetylase activity are known to play an important role in anti-aging and longevity. Cellular senescence is one of the hallmarks of aging, and downregulation of sirtuin is reported to induce premature senescence. In this study, we investigated the effects of small-molecule sirtuin inhibitors on cellular senescence. Various small molecules such as tenovin-1 and EX527 were employed for direct sirtuin activity inhibition. U251, SNB-75, and U87MG glioblastoma cells treated with sirtuin inhibitors exhibited phenotypes with nuclear enlargement. Furthermore, treatment of rat primary astrocytes with tenovin-1 also increased the size of the nucleus. The activity of senescence-associated β-galactosidase, a marker of cellular senescence, was induced by tenovin-1 and EX527 treatment in U87MG glioblastoma cells. Consistent with the senescent phenotype, treatment with tenovin-1 increased p53 expression in U87MG cells. This study demonstrated the senescence-inducing effect of sirtuin inhibitors, which are potentially useful tools for senescence research.

Enhanced Viral Replication by Cellular Replicative Senescence

  • Ji-Ae Kim;Rak-Kyun Seong;Ok Sarah Shin
    • IMMUNE NETWORK
    • /
    • 제16권5호
    • /
    • pp.286-295
    • /
    • 2016
  • Cellular replicative senescence is a major contributing factor to aging and to the development and progression of aging-associated diseases. In this study, we sought to determine viral replication efficiency of influenza virus (IFV) and Varicella Zoster Virus (VZV) infection in senescent cells. Primary human bronchial epithelial cells (HBE) or human dermal fibroblasts (HDF) were allowed to undergo numbers of passages to induce replicative senescence. Induction of replicative senescence in cells was validated by positive senescence-associated b-galactosidase staining. Increased susceptibility to both IFV and VZV infection was observed in senescent HBE and HDF cells, respectively, resulting in higher numbers of plaque formation, along with the upregulation of major viral antigen expression than that in the non-senescent cells. Interestingly, mRNA fold induction level of virus-induced type I interferon (IFN) was attenuated by senescence, whereas IFN-mediated antiviral effect remained robust and potent in virus-infected senescent cells. Additionally, we show that a longevity-promoting gene, sirtuin 1 (SIRT1), has antiviral role against influenza virus infection. In conclusion, our data indicate that enhanced viral replication by cellular senescence could be due to senescence-mediated reduction of virus-induced type I IFN expression.

Expression of the Promoter for the Maltogenic Amylase Gene in Bacillus subtilis 168

  • Kim Do-Yeon;Cha Choon-Hwan;Oh Wan-Seok;Yoon Young-Jun;Kim Jung-Wan
    • Journal of Microbiology
    • /
    • 제42권4호
    • /
    • pp.319-327
    • /
    • 2004
  • An additional amylase, besides the typical $\alpha-amylase,$ was detected for the first time in the cytoplasm of B. subtilis SUH4-2, an isolate from Korean soil. The corresponding gene (bbmA) encoded a malto­genic amylase (MAase) and its sequence was almost identical to the yvdF gene of B. subtilis 168, whose function was unknown. Southern blot analysis using bbmA as the probe indicated that this gene was ubiquitous among various B. subtilis strains. In an effort to understand the physiological function of the bbmA gene in B. subtilis, the expression pattern of the gene was monitored by measuring the $\beta-galactosidase$ activity produced from the bbmA promoter fused to the amino terminus of the lacZ struc­tural gene, which was then integrated into the amyE locus on the B. subtilis 168 chromosome. The pro­moter was induced during the mid-log phase and fully expressed at the early stationary phase in defined media containing $\beta--cyclodextrin\;(\beta-CD),$ maltose, or starch. On the other hand, it was kept repressed in the presence of glucose, fructose, sucrose, or glycerol, suggesting that catabolite repression might be involved in the expression of the gene. Production of the $\beta-CD$ hydrolyzing activity was impaired by the spo0A mutation in B. subtilis 168, indicating the involvement of an additional regu­latory system exerting control on the promoter. Inactivation of yvdF resulted in a significant decrease of the $\beta-CD$ hydrolyzing activity, if not all. This result implied the presence of an additional enzyme(s) that is capable of hydrolyzing $\beta-CD$ in B. subtilis 168. Based on the results, MAase encoded by bbmA is likely to be involved in maltose and $\beta-CD$ utilization when other sugars, which are readily usable as an energy source, are not available during the stationary phase.

Hormonal Effects of Several Chemicals in Recombinant Yeast, MCF-7 Cells and Uterotrophic Assays in Mice

  • Park, Jin-Sung;Lee, Beom-Jun;Kang, Kyung-Sun;Tai, Joo-Ho;Cho, Jae-Jin;Cho, Myung-Haing;Inoue, Tohru;Lee, Yong-Soon
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권3호
    • /
    • pp.293-299
    • /
    • 2000
  • Many methods have been developed for screening chemicals with hormonal activity. Using recombinant yeasts expressing either human estrogen receptor [Saccharomyces cerevisiae ER + LYS 8127 (YER)] or androgen receptor [S. cerevisiae AR + 8320 (YAR)], we evaluated the hormonal activities of several chemicals by induction of ${\beta}-galactosidase$ activity. The chemicals were $17{\beta}-estradiol$ (E2), testosterone (T), ${\rho}-nonylphenol$ (NP), bisphenol A (BPA), genistein (GEN), 2-bromopropane (2-BP), dibutyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and butylparaben (BP). To assess the estrogenicity of NP, the result of the in vitro recombinant yeast assay was compared with an E-screen assay using MCF-7 human breast cancer cells and an uterotrophid assay using ovariectomized mice. In the YER yeast cells, E2, NP, BPA, GEN, and BP exhibited estrogenicity in a doseresponse manner, while TCDD did not. All the chemicals tested, except T, did not show androgenicity in the YAR yeast cell. The sensitivity of the yeast (YER) assay system to the estrogenic effect of NP was similar to that of the E-screen assay. NP was also estrogenic in the uterotrophic assay. However, in terms of convenience and costs, the yeast assay was superior to the E-screen assay or uterotrophic assay. These results suggest that the recombinant yeast assay can be used as a rapid tool for detecting chemicals with hormonal activities.

  • PDF

Isolation, Identification, and Probiotic Properties of Lactobacillus reuteri HY701 from Human Feces

  • Kim, Jun-Tae;Jung, Hwang-Young;Lee, Na-Kyoung;Rhim, Seong-Lyul;Paik, Hyun-Dong
    • Food Science and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.677-682
    • /
    • 2006
  • Strain HY701 was isolated from human feces for probiotic use by selecting highly resistant isolates to artificial gastric acid and bile acid. Strain HY701 was identified as Lactobacillus reuteri using 16S rDNA sequencing, and tentatively named L. reuteri HY701. The resistance of L. reuteri HY701 to artificial gastric acid (PH 2.5) was high with a survival rate of over 90%. L. reuteri HY701 also showed high tolerance to artificial bile acid after incubation in artificial gastric acid. Using the API ZYM test kit, the carcinogenic enzymes (${\beta}$-glucuronidase and (${\beta}$-glucosidase were not detected with L. reuteri HY70l, while the beneficial enzyme (${\beta}$-galactosidase was weakly detected. L. reuteri HY701 was sensitive to $100\;{\mu}g/mL$ nisin, $20\;{\mu}g/mL$ roxithromycin, $15\;{\mu}g/mL$ erythromycin, but resistant to $20\;{\mu}g/mL$ streptomycin, $10\;{\mu}g/mL$ tetracycline, $20\;{\mu}g/mL$ ciprofloxacin, $20\;{\mu}g/mL$ nystatin, $20\;{\mu}g/mL$ gentamycin, $10\;{\mu}g/mL$ doxycycline, $10\;{\mu}g/mL$ chloramphenicol, and $20\;{\mu}g/mL$ ampicillin. L. reuteri HY701 was shown to possess bactericidal activity as it inhibited the growth of Listeria monocytogenes ATCC 19111 and Escherichia coli JM109 completely within 24 hr of incubation. These results indicate that L. reuteri HY701 could be used as a probiotic strain.

Physiological Characteristics and Anti-obesity Effect of Lactobacillus plantarum Q180 Isolated from Feces

  • Park, Sun-Young;Cho, Seong-A;Kim, Sae-Hun;Lim, Sang-Dong
    • 한국축산식품학회지
    • /
    • 제34권5호
    • /
    • pp.647-655
    • /
    • 2014
  • Obesity is strongly associated with several metabolic and chronic diseases and has become a major public health problem of worldwide concern. This study aimed to investigate the physiological characteristics and anti-obesity effects of Lactobacillus plantarum Q180. Lactobacillus plantarum Q180 was isolated from the faces of healthy adults and found to have a lipase inhibitory activity of $83.61{\pm}2.32%$ and inhibited adipocyte differentiation of 3T3-L1 cells ($14.63{\pm}1.37%$) at a concentration of $100{\mu}g/mL$. The strain was investigated for its physiological characteristics. The optimum growth temperature of L. plantarum Q180 was $37^{\circ}C$. Lactobacillus plantarum Q180 showed higher sensitivity to novobiocin in a comparison of fifteen different antibiotics and showed the highest resistance to rifampicin, polymyxin B and vancomycin. The strain showed higher ${\beta}$-galactosidase and N-acetyl-${\beta}$-glucosaminidase activities. It also did not produce carcinogenic enzymes such as ${\beta}$-glucuronidase. The survival rate of L. plantarum Q180 in MRS broth containing 0.3% bile was 97.8%. Moreover, the strain showed a 97.2% survival rate after incubation for 3 h in pH 2.0. Lactobacillus plantarum Q180 was displayed resistance to Escherichia coli, Salmonella Typhimurium and Staphylococcus aureus with rates of 55.6%, 38.0% and 47.6%, respectively. These results demonstrate that L. plantarum Q180 has potential as a probiotic with anti-obesity effects.

Expression, Characterization and Regulation of a Saccharomyces cerevisiae Monothiol Glutaredoxin (Grx6) Gene in Schizosaccharomyces pombe

  • Lee, Jae-Hoon;Kim, Kyunghoon;Park, Eun-Hee;Ahn, Kisup;Lim, Chang-Jin
    • Molecules and Cells
    • /
    • 제24권3호
    • /
    • pp.316-322
    • /
    • 2007
  • Glutaredoxins (Grxs), also known as thioltransferases (TTases), are thiol oxidoreductases that regulate cellular redox state in a variety of organisms. In the budding yeast Saccharomyces cerevisiae, Grx1 and 2 are cytosolic dithiol Grxs, while Grx3, 4 and 5 are monothiol Grxs. A gene encoding a new monothiol Grx, Grx6, was cloned from the genomic DNA of S. cerevisiae by PCR. Its DNA sequence contains 1,080 bp, and encodes a putative protein of 203 amino acid residues containing Cys-Phe-Tyr-Ser at the active site. Grx6 is similar to other monothiol Grxs in the same organism and to Grx3 in the fission yeast Schizosaccharomyces pombe. and its predicted three-dimensional structure resembles that of S. pombe Grx3. S. pombe cells harboring plasmid pFGRX6 containing the Grx6 gene had about 1.3-fold elevated Grx activity in the exponential phase, and grew better than the control cells under some stressful conditions. Synthesis of ${\beta}$-galactosidase from a Grx6-lacZ fusion gene in S. pombe was enhanced by potassium chloride, aluminum chloride and heat ($37^{\circ}C$) treatment. S. pombe cells harboring plasmid pFGRX6 had elevated ROS levels whereas S. pombe cells harboring extra copies of Grx3 had reduced ROS levels.

산란계에서 탄수화물 분해효소제의 첨가가 계란의 품질 및 영양소 소화율에 미치는 영향 (Influence of Dietary Carbohydrase on Egg Quality and Nutrient Digestibility in Laying Hens)

  • 민병준;김인호;홍종욱;문태현;이지훈;한영근;권오석;이상환;이원백
    • 한국가금학회지
    • /
    • 제29권1호
    • /
    • pp.19-23
    • /
    • 2002
  • 본 연구의 목적은 산란계 사료내 복합효소제의 첨가가 난각특성 및 영양소 소화율에 미치는 영향을 조사하기 위하여 실시하였다. 사양시험은 47주령 ISA Brown산란계 144수를 공시하였으며, 처리구로는 옥수수-대두박 위주의 사료(CON; 기초사료), 기초사료에 복합효소제를 0.7% 첨가한 구(ME0.1; 기초사료 + 0.1%복합효소제), 기초사료에 복합효소제를 0.2% 첨가한 구(ME0.2; 기초사료 + 0.2% 복합효소제)로 3개 처리로 구성되었다. 총 28일간의 사양시험 기간 동안, 산란을, 난중, 난각강도 그리고 난각두께에 있어서 처리구간에 유의적인 차이는 보이지 않았다. 난황색에 있어서는 복합효소제를 첨가함에 따라 유의적으로 증가하였다. 난황계수에 있어서도 복합효소제의 첨가수준이 증가함에 따라 유의적으로 높아졌다. 건물 소화율에서 처리구간에 유의적인 차이는 없었으나, 질소 소화율에 있어서는 복합효소제의 첨가수준이 증가함에 따라 대조구와 비교하여 유의적으로 높았다. 결론적으로, 산란계 사료내 복합효소제의 첨가가 난황색, 난황계수 그리고 질소 소화율을 향상시키는 것으로 사료된다