• Title/Summary/Keyword: -energy-dispersive x-ray-

Search Result 1,064, Processing Time 0.026 seconds

Anti-Icing Characteristics of Aluminum 6061 Alloys According to Surface Nanostructure (알루미늄 6061 합금의 표면 나노 구조물 변화에 따른 방빙 특성 연구)

  • Rian, Kim;Chanyoung, Jeong
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.476-486
    • /
    • 2022
  • Recently, aluminum 6061 instead of copper alloy is used for cooling heat exchangers used in the internal combustion of engines due to its economic feasibility, lightweight, and excellent thermal conductivity. In this study, aluminum 6061 alloy was anodized with oxalic acid, phosphoric acid, or chromic acid as an anodizing electrolyte at the same concentration of 0.3 M. After the third anodization, FDTS, a material with low surface energy, was coated to compare hydrophobic properties and anti-icing characteristics. Aluminum was converted into an anodization film after anodization on the surface, which was confirmed through Energy Dispersive X-ray Spectroscopy (EDS). Pore distance, interpore distance, anodization film thickness, and solid fraction were measured with a Field Emission Scanning Electron Microscope (FESEM). For anti-icing, hydrophobic surfaces were anodized with oxalic acid, phosphoric acid, or chromic acid solution. The sample anodized in oxalic acid had the lowest solid fraction. It had the highest contact angle for water droplets and the lowest contact hysteresis angle. The anti-icing contact angle showed a tendency to decrease for specimens in all solutions.

Raman spectroscopy of eutectic melting between boride granule and stainless steel for sodium-cooled fast reactors

  • Hirofumi Fukai;Masahiro Furuya;Hidemasa Yamano
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.902-907
    • /
    • 2023
  • To understand the eutectic reaction mechanism and the relocation behavior of the core debris is indispensable for the safety assessment of core disruptive accidents (CDAs) in sodium-cooled fast reactors (SFRs). This paper addresses reaction products and their distribution of the eutectic melting/solidifying reaction of boron carbide (B4C) and stainless-steel (SS). The influence of the existence of carbon on the B4C-SS eutectic reaction was investigated by comparing the iron boride (FeB)-SS reaction by Raman spectroscopy with Multivariate Curve Resolution (MCR) analysis. The scanning electron microscopy with dispersive X-ray spectrometer was also used to investigate the elemental information of the pure metals such as Cr, Ni, and Fe. In the B4C-SS samples, a new layer was formed between B4C/SS interface, and the layer was confirmed that the formed layer corresponded to amorphous carbon (graphite) or FeB or Fe2B. In contrast, a new layer was not clearly formed between FeB and SS interface in the FeB-SS samples. All samples observed the Cr-rich domain and Fe and Ni-rich domain after the reaction. These domains might be formed during the solidifying process.

Effect of Electroplating Parameters on Oxygen Evolution Reaction Characteristics of Raney Ni-Zn-Fe Electrode (Raney Ni-Zn-Fe 전극의 산소발생 반응 특성에 미치는 도금변수의 영향)

  • CHAE, JAEBYEONG;KIM, JONGWON;BAE, KIKWANG;PARK, CHUSIK;JEONG, SEONGUK;JUNG, KWANGJIN;KIM, YOUNGHO;KANG, KYOUNGSOO
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2020
  • The intermittent characteristics of renewable energy complicates the process of balancing supply with demand. Electrolysis technology can provide flexibility to grid management by converting electricity to hydrogen. Alkaline electrolysis has been recognized as established technology and utilized in industry for over 100 years. However, high overpotential of oxygen evolution reaction in alkaline water electrolysis reduces the overall efficiency and therefore requires the development of anode catalyst. In this study, Raney Ni-Zn-Fe electrode was prepared by electroplating and the electrode characteristics was studied by varying electroplating parameters like electrodeposition time, current density and substrate. The prepared Raney Ni-Zn-Fe electrode was electrochemically evaluated using linear sweep voltammetry. Physical and chemical analysis were conducted by scanning electron microscope, energy dispersive spectrometer, and X-ray diffraction. The plating time did not changed the morphology and composition of the electrode surface and showed a little effect on overpotential reduction. As the plating current density increased, Fe content on the surface increased and cauliflower-like structure appeared on the electrode surface. In particular, the overpotential of the electrode, which was prepared at the plating current density of 320 mA/㎠, has showed the lowest value of 268 mV at 50 mA/㎠. There was no distinguishable overpotential difference between the type of substrate for the electrodes prepared at 80 mA/㎠.

The Study of Fast X-ray Fluorescence Analysis Using a SSQ Program (SSQ 프로그램을 이용한 빠른 X-선형광분석법 고찰)

  • Park, Yong Joon
    • Analytical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.112-119
    • /
    • 1998
  • A Siemens SemiQuant (SSQ) 3000 program, a precalibrated 'standardless' analytical program handling up to 90 elements, was evaluated for the fast analysis of various types of reference materials using a wavelength dispersive X-ray spectrometer. Various types of standard reference materials such as metal discs, metal chips, and geological materials in powder form were analysed and it took 23 minutes of measuring time for 75 elements. Measurements of geological reference materials using different sampling methods were carried out and their data were interactively evaluated. The analysis of materials of a known matrix concentration such as stainless steels provided higher precision value compared to totally unknown samples. The analyses of materials prepared as pressed pellets or fused glass beads provided higher precision values compared to the measurement of loose powders with a foil on the sample surface and helium operation, though their sampling procedures were more complicate and took more time. Since very light elements such as boron, carbon, and oxygen have a strong influence on the matrix effects and also on the calculation of effective matrix corrections, the rhodium Compton check was applied to verify the reliability of the defined light element concentrations of light matrix materials and the defined major sample compounds. Failure of defining correct matrix resulted in an unoptimized matrix correction and therefore in the wrong calculation of the element concentration.

  • PDF

New Synthesis of the Ternary Type Bi2WO6-GO-TiO2 Nanocomposites by the Hydrothermal Method for the Improvement of the Photo-catalytic Effect (개선된 광촉매 효과를 위한 수열법에 의한 삼원계 Bi2WO6-GO-TiO2 나노복합체의 쉬운 합성 방법)

  • Nguyen, Dinh Cung Tien;Cho, Kwang Youn;Oh, Won-Chun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.705-713
    • /
    • 2017
  • A novel material, $Bi_2WO_6-GO-TiO_2$ composite, was successfully synthesized using a facile hydrothermal method. During the hydrothermal reaction, the loading of $Bi_2WO_6$ and $TiO_2$ nanoparticles onto graphene sheets was achieved. The obtained $Bi_2WO_{6-GO-TiO2}$ composite photo-catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-vis-DRS), and X-ray photoelectron spectroscopy (XPS). The $Bi_2WO_6$ nanoparticle showed an irregular dark-square block nanoplate shape, while $TiO_2$ nanoparticles covered the surface of the graphene sheets with a quantum dot size. The degradation of rhodamine B (RhB), methylene blue trihydrate (MB), and reactive black B (RBB) dyes in an aqueous solution with different initial amount of catalysts was observed by UV spectrophotometry after measuring the decrease in the concentration. As a result, the $Bi_2WO_6-GO-TiO_2$ composite showed good decolorization activity with MB solution under visible light. The $Bi_2WO_6-GO-TiO_2$ composite is expected to become a new potential material for decolorization activity. Photocatalytic reactions with different photocatalysts were explained by the Langmuir-Hinshelwood model and a band theory.

Characterizations of CuInGaSe(CIGS) mixed-source and the thin film (CuInGaSe(CIGS)혼합 소스의 제작과 특성)

  • Lee, Ah-Reum;Jeon, Hun-Soo;Lee, Gang-Suok;Ok, Jin-Eun;Cho, Dong-Wan;Kim, Kyung-Hwa;Yang, Min;Yi, Sam-Nyeong;Ahn, Hyung-Soo;Cho, Chae-Ryong;Son, Sang-Ho;Ha, Henry
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • CuInGaSe(CIGS) mixed-source was prepared by hydride vapor phase epitaxy (HVPE). Each metal was mixed in regular ratio and soaked at $1090^{\circ}C$ for 90 minutes in nitrogen atmosphere. After making the mixed-source to powder state, the pellet was made by the powder. The diameter of pellet is 10 mm. The CIGS thin film was deposited on soda lime glass evaporated Mo layer bye-beam evaporator. To confirm the crystallization, we measured X-ray diffraction (XRD). High intensity X-ray peaks diffracted from (112), (204)/(220), (116)/(312) and (400) of CIGS thin film and from (110) of Mo were confirmed by XRD measurement.

Growth of Atomic Layer Deposition Platinum on TiO2 (이산화 티타늄 위에서의 원자층 증착법 백금의 성장 특성)

  • Kim, Hyun Gu;Lee, Han-Bo-Ram
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.2
    • /
    • pp.38-42
    • /
    • 2015
  • Atomic layer deposition (ALD) is essential for the fabrication of nanoscale electronic devices because it has excellent conformality, atomic scale thickness control, and large area uniformity. Metal thin films are one of the important material components for electronic devices as a conductor. As the size of electronic devices shrinks, the thickness of metal thin films is decreased down to few nanometers, and the metal films become non-continuous due to inherent island growth of metal below a critical thickness. So, fabrication of continuous metal thin films by ALD is fundamentally and practically important. Since ALD films are grown through self-saturated reactions between precursors on surface, initial growth characteristics significantly depend on the surface properties and the selection of precursors. In this work, we investigated ALD Pt on $TiO_2$ substrate by using trimethyl-methyl-cyclopentadienyl-Platinum ($MeCpPtMe_3$) precursor and $O_3$ reactant. By using $O_3$ instead of $O_2$, initial nucleation rate of ALD Pt was increased on $TiO_2$ surface, resulting in formation of continuous thin Pt films. Morphologies of ALD Pt on $TiO_2$ were characterized by using Scanning Electron Microscope (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS). Crystallinity of ALD Pt on $TiO_2$ correlated with its growth characteristics was analyzed by X-Ray Diffraction (XRD).

Photocatalytic Performance of ZnS and TiO2 Supported on AC Under Visible Light Irradiation

  • Meng, Ze-Da;Cho, Sun-Bok;Ghosh, Trisha;Zhu, Lei;Choi, Jong-Geun;Park, Chong-Yeon;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.91-96
    • /
    • 2012
  • AC and ZnS modified $TiO_2$ composites (AC/ZnS/$TiO_2$) were prepared using a sol-gel method. The composite obtained was characterized by Brunauer-Emmett-Teller (BET) surface area measurements, X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, scanning electron microscope (SEM) analysis, and according to the UV-vis absorption spectra (UV-vis). XRD patterns of the composites showed that the AC/ZnS/$TiO_2$ composites contain a typical single and clear anatase phase. The surface properties as observed by SEM present the characterization of the texture of the AC/ZnS/$TiO_2$ composites, showing a homogenous composition in the particles showing the micro-surface structures and morphology of the composites. The EDX spectra of the elemental identification showed the presence of C and Ti with Zn and S peaks for the AC/ZnS/$TiO_2$ composite. UV-vis patterns of the composites showed that these composites had greater photocatalytic activity under visible light irradiation. A rhodamine B (Rh.B) solution under visible light irradiation was used to determine the photocatalytic activity. The degradation of Rh.B was determined using UV/Vis spectrophotometry. An increase in the photocatalytic activity was observed. From the photocatalytic results, the excellent activity of the Y-fullerene/$TiO_2$ composites for the degradation of methylene blue under visible irradiation could be attributed to an increase in the photo-absorption effect caused by the ZnS and to the cooperative effect of the AC.

RF 마그네트론 스퍼터링을 이용하여 온도별로 증착한 CIGS 박막의 미세구조 및 화학 조성 분석

  • Jeong, Jae-Heon;Jo, Sang-Hyeon;Song, Pung-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.278-279
    • /
    • 2012
  • 최근 들어 세계적인 고유가 행진과 화석연료 고갈에 대응하기 위하여 대체 에너지원 발굴에 대한 필요성이 높아지고 있다. 그 중 CIGS 박막 태양전지는 미래 신재생 에너지 자원의 가장 유망한 후보군 중 하나이다. 기존의 Si 기반의 태양전지의 경우 시간경과에 따른 효율 저하, 높은 재료비, 복잡한 공정으로 인하여 대량생산이 힘든 단점을 가지고 있다. 반면 박막 태양전지의 경우 생산 원가를 낮출 수 있는 태양전지 제조기술로서는 2세대 태양전지로 불리우며, 에너지 변환 효율과 생산 원가에서 우월성을 가진다. 그리고 이러한 CIGS 박막 태양전지를 단일 CIGS 타겟을 이용하여 스퍼터링 공정으로 제작하면 기존에 사용되었던 동시 증발법에 비해서 간단하고 대면적 코팅 및 대량 생산이 가능하다. 본 연구에서 사용된 기판으로는 $25{\times}25mm$ 크기의 Soda Lime Glass (SLG) 위에 DC 마그네트론 스퍼터링 공정으로 Mo가 $1{\mu}m$ 증착된 시편을 이용하여, 2 inch 단일 CIGS 타겟 (MATERION, CIGS Target 25-17.5-7.5-50 at%)을 기판 가열하여 증착하였다. RF 파워는 80 W, 기판 온도는 RT, 100, 200, 300, $400^{\circ}C$로 가열 후 증착하였고, CIGS 박막의 두께는 약 $1{\mu}m$로 일정하게 하였다. CIGS/Mo 박막의 파워별 미세구조 분석을 위해 X-ray Diffraction (XRD, BRUKER GADDS)로 측정하였으며, 박막의 결정립 크기를 확인하기 위해 Field Emission Scanning Electron Microscopy (FE-SEM, HITACHI)을 사용하여 측정하였다. 조건별 박막의 조성 분석 및 표면조도는 Energy Dispersive X-ray Spectroscopy (EDS, HORIBA 7395-H)와 Atomic Force Microscopy (AFM)을 이용하여 각각 평가하였다. 마지막으로 광학적 특성을 평가하고 박막의 밴드갭 에너지를 계산하기 위해서 190 nm에서 1,100 nm의 영역 대에서 자외선 광학 측정기(UV-Vis, HP-8453, AGLIENT)로 투과도를 측정하여 밴드갭 에너지를 계산하였다. 증착된 CIGS 박막은 기판 온도가 증가함에 따라 결정립 크기가 커지는 경향을 보였다. 이는 기판 상에 도달한 스퍼터 원자의 확산 에너지 증가로 인한 것으로 생각되어진다. 또한, 기판온도에 따른 결정립 성장 변화는 4성분계의 박막의 조성 및 핵생성 밀도와 관련되어 설명되어질 것이다.

  • PDF

Synthesis and characterization of carbon doped TiO2 photocatalysts supported on stainless steel mesh by sol-gel method

  • Tijani, JO.;Fatoba, OO.;Totito, TC.;Roos, WD.;Petrik, LF.
    • Carbon letters
    • /
    • v.22
    • /
    • pp.48-59
    • /
    • 2017
  • This study synthesized pure anatase carbon doped $TiO_2$ photocatalysts supported on a stainless steel mesh using a sol-gel solution of 8% polyacrylonitrile (PAN)/dimethylformamide (DMF)/$TiCl_4$. The influence of the pyrolysis temperature and holding time on the morphological characteristics, particle sizes and surface area of the prepared catalyst was investigated. The prepared catalysts were characterized by several analytical methods: high resolution scanning electron microscopy (HRSEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). The XRD patterns showed that the supported $TiO_2$ nanocrystals are typically anatase, polycrystalline and body-centered tetragonal in structure. The EDS and XPS results complemented one another and confirmed the presence of carbon species in or on the $TiO_2$ layer, and the XPS data suggested the substitution of titanium in $TiO_2$ by carbon. Instead of using calcination, PAN pyrolysis was used to control the carbon content, and the mesoporosity was tailored by the applied temperature. The supported $TiO_2$ nanocrystals prepared by pyrolysis at 300, 350, and $400^{\circ}C$ for 3 h on a stainless steel mesh were actual supported carbon doped $TiO_2$ nanocrystals. Thus, $PAN/DMF/TiCl_4$ offers a facile, robust sol-gel related route for preparing supported carbon doped $TiO_2$ nanocomposites.