• Title/Summary/Keyword: -cells

Search Result 48,499, Processing Time 0.068 seconds

Inhibition of Adipocyte Differentiation through G1 Arrest by Extract of Sophora tonkinensis Gapnep in 3T3-L1 Preadipocytes (산두근 추출물의 세포주기 정지를 통한 3T3-L1 지방전구세포의 분화 억제)

  • Jeong, Hyun-Young;Hyun, Sook-Kyung;Choi, Yung-Hyun;Kim, Byung-Woo;Kwon, Hyun-Ju
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1346-1353
    • /
    • 2011
  • Sophora tonkinensis Gapnep has been used as a traditional herbal medicine in oriental regions since ancient times. In this study, the effect and mechanism of the MeOH extract of Sophora tonkinensis Gapnep (STME) on adipocite differentiation and adipogenesis in 3T3-L1 preadipocites were investigated. Treatment with STME in the concentration range of 0-200 ${\mu}g$/ml significantly inhibited the differentiation of 3T3-L1 preadipocites in a dose-dependent manner, as determined by a decrease in intracellular lipid droplets and lipid contents measured by Oil Red O staining. In association with the inhibitory effect of lipid accumulation, the expressions of the proteins concerned with adipogenesis in 3T3-L1 preadipocites were also investigated. Treatment with STME reduced the expressions of peroxisome proliferator-activated receptor ${\gamma}$ (PPAR${\gamma}$), cytidine-cytidine-adenosine-adenosine-thymine (CCAAT)/enhancer-binding proteins ${\alpha}$ and ${\beta}$ (C/EBP${\alpha}$ and C/EBP${\beta}$) and sterol regulatory element binding protein (SREBP), which are adipocyte specific markers. In flow cytometry analysis, the inhibitory effect of differentiation was caused by G1 arrest and following mitotic clonal expansion cease. Therefore, we also investigated the alteration of G1 phase arrest-related proteins. As a result, the expression of p21 protein was significantly increased, while the expressions of Cdk2, E2F-1 and phospho-Rb were reduced in a dose-dependent manner in STME treated 3T3-L1 cells. According to these results, STME might inhibit differentiation through G1 arrest in 3T3-L1 preadipocytes adipogenesis, and further studies, which are in progress, have to be completed to identify the active compounds.

Antioxidant Activity of Rubus crataegifolius Bge. Fruit Extracts (Rubus crataegifolius Bge. 열매 추출물의 항산화 활성)

  • Moon, Kyoung-Mi;Kim, Ji-Eun;Kim, Hae-Young;Lee, Jae-Seol;Son, Gi-Ae;Nam, Soo-Wan;Kim, Byung-Woo;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1214-1218
    • /
    • 2011
  • We investigated the fruits of Rubus crataegifolius Bge, a plant which has been traditionally used in Korea in phytotherapy, to describe antioxidant materials from plant sources. R. crataegifolius fruits were extracted with methanol and further fractionated into n-hexane, diethyl ether, and ethyl acetate. The antioxidant activity of each fraction and the residue was assessed using a 1,1-diphenyl-2-picrylhydrazyl (DPPH), $H_2O_2$ radical scavenging method, and their cytotoxicity on human primary kerationcyte (HK) was determined by an MTS assay. The R. crataegifolius fruit methanol extract showed strong antioxidant activity (75.04%, 50%) compared with vitamin C (79.9%, 54.1%) by the DPPH, and $H_2O_2$ method, respectively. The measured activity from the subsequent extracts of the methanol extract were 20.3% for n-hexane fraction (HF), 68.8% for diethyl ether fraction (DF), 67.1% for ethyl acetate fraction (EF), and 67.1% for the residue fraction (RE) by DPPH and 2.2% for HF, 1.6% for DF, 10% for EF, and 50% for the RE by $H_2O_2$ assay. An oxidative stress model of HK was established under a suitable concentration (1 mM). The cell viability of the RE treated group increased and the percentage of apoptotic cells decreased at concentrations of 0.005-0.02% RE compared with the $H_2O_2$ treated group. Fruit extracts of the medicinal plant R. crataegifolius showed potent antioxidant activity and the ability to relieve cell damage from $H_2O_2$ induced injury to HK.

Characterization and Purification of the Bacteriocin Produced by Bacillus licheniformis Isolated from Soybean Sauce (간장에서 분리한 Bacillus licheniformis가 생산하는 박테리오신의 특성 및 정제)

  • Jung, Sung-Sub;Choi, Jung-I;Joo, Woo-Hong;Suh, Hyun-Hyo;Na, Ae-Sil;Cho, Yong-Kweon;Moon, Ja-Young;Ha, Kwon-Chul;Paik, Do-Hyeon;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.994-1002
    • /
    • 2009
  • A bacteriocin-producing bacterium identified as Bacillus licheniformis was isolated from soybean sauce. Antibacterial activity was confirmed by paper disc diffusion method, using Micrococcus luteus as a test organism. The bacteriocin also showed antibacterial activities against Bacillus sphaericus, Lactobacillus bulgaricus, Lactobacillus planiarum, Paenibacillus polymyxa, and Pediococcus dextrinicus. Optimal culture conditions for the production of bacteriocin was attained by growing the cells in an MRS medium at a pH of 6.5~ 7.0 and a temperature of 37$^\circ$C for 36$\sim$48 hr. Solvents such as chloroform, ethanol, acetone, and acetonitrile had little effect on bacteriocin activity. However, about 50% of bacteriocin activity diminished with treatment of methanol and isopropanol at the final concentration of 50% at 25$^\circ$C for 1 hr. It was stable against a pH variation range from 3.0 and 7.0, but the activity reduced to 50% at a pH range from 9.0 to 11.0. It's activity was not affected by heat treatment at 100$^\circ$C for 30 min and 50% of activity was retained after heat treatment at 100$^\circ$C for 60 min, showing high thermostability. The bacteriocin was purified to a homogeneity through ammonium sulfate precipitation, SP-Sepharose ion-exchange chromatography, and reverse-phase high-performance liquid chromatography (HPLC). The entire purification protocol led to a 75-fold increase in specific activity and a 13.5% yield of bacteriocin activity. The molecular weight of purified bacteriocin was estimated to be about 2.5 kDa by tricine-SDS-PAGE.

A Study on the Gene Expression of Adipogenic Regulators by an Herbal Composition (생약복합물에 의한 지방세포형성 조절자의 유전자 발현 연구)

  • Lee, Hae-Yong;Kang, Ryun-Hwa;Bae, Sung-Min;Chae, Soo-Ahn;Lee, Jung-Ju;Oh, Dong-Jin;Park, Suk-Won;Cho, Soo-Hyun;Shim, Yae-Jie;Yoon, Yoo-Sik
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.729-735
    • /
    • 2010
  • In our previous study, it was reported that an herbal mixture, SH21B, inhibits fat accumulation and adipogenesis both in vitro and in vivo models of obesity. SH21B is a mixture composed of seven herbs: Scutellaria baicalensis Georgi, Prunus armeniaca Maxim, Ephedra sinica Stapf, Acorus gramineus Soland, Typha orientalis Presl, Polygala tenuifolia Willd, and Nelumbo nucifera Gaertner (Ratio 3:3:3:3:3:2:2). The aim of this study was to investigate the detailed molecular mechanisms of the effects of SH21B on various regulators of the adipogenesis pathway. During the adipogenesis of 3T3-L1 cells, SH21B significantly decreased the expression levels of central transcription factors of adipogenesis, such as peroxisome proliferator-activated receptor (PPAR)$\gamma$ and CCAAT/enhancer binding protein (C/EBP)$\alpha$. To elucidate the detailed molecular mechanism of the anti-adipogenic effects of SH21B, we examined the expression levels of the various pro-adipogenic or anti-adipogenic regulators of adipogenesis upstream of $PPAR{\gamma}$ and C/$EBP{\alpha}$. The mRNA levels of Krox20 and Kruppel-like factor (KLF) 15, which are pro-adipogenic regulators, were significantly down-regulated by SH21B treatment, whereas the mRNA levels of C/$EBP{\gamma}$ and KLF5 were not changed. KLF2 and C/EBP homologous protein (CHOP), which are anti-adipogenic regulators, were significantly up-regulated by SH21B treatment. These results suggest that the molecular mechanism of the anti-adipogenic effect of SH21B involves both the down-regulations of pro-adipogenic regulators, such as Krox20 and KLF15, and the up-regulations of anti-adipogenic regulators, such as KLF2 and CHOP, which results in the suppression of central transcription factors of adipogenesis including $PPAR{\gamma}$ and C/$EBP{\alpha}$.

Cytoprotective Effects of Schisandrin A against Hydrogen Peroxide-induced Oxidative Stress in SW1353 Human Chondrocytes (SW1353 인간 연골세포에서 산화적 스트레스에 대한 schisandrin A의 세포 보호 효과)

  • Jeong, Jin-Woo;Choi, Eun Ok;Kwon, Da Hye;Kim, Bum Hoi;Park, Dong Il;Hwang, Hye Jin;Kim, Byung Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.27 no.9
    • /
    • pp.1070-1077
    • /
    • 2017
  • Chondrocyte apoptosis induced by reactive oxygen species (ROS) plays an important role in the pathogenesis of osteoarthritis. Schisandrin A, a bioactive compound found in fruits of the Schisandra genus, has been reported to possess multiple pharmacological and therapeutic properties. Although several studies have described the antioxidant effects of analogues of schisandrin A, the underlying molecular mechanisms of this bioactive compound remain largely unresolved. The present study investigated the cytoprotective effect of schisandrin A against oxidative stress (hydrogen peroxide [$H_2O_2$]) in SW1353 human chondrocyte cells. The results showed that schisandrin A preconditioning significantly inhibited $H_2O_2-induced$ growth inhibition and apoptotic cell death by blocking the degradation of poly (ADP-ribose) polymerase proteins and down-regulating pro-caspase-3. These antiapoptotic effects of schisandrin A were associated with attenuation of mitochondrial dysfunction and normalization of expression changes of proapoptotic Bax and antiapoptotic Bcl-2 in $H_2O_2-stimulated$ SW1353 chondrocytes. Furthermore, schisandrin A effectively abrogated $H_2O_2-induced$ intracellular ROS accumulation and phosphorylation of histone H2AX at serine 139, a widely used marker of DNA damage. Thus, the present study demonstrates that schisandrin A provides protection against $H_2O_2-induced$ apoptosis and DNA damage in SW1353 chondrocytes, possibly by prevention of ROS generation. Collectively, our data indicate that schisandrin A has therapeutic potential in the treatment of oxidative disorders caused by overproduction of ROS.

Transfer of Isolated Mitochondria to Bovine Oocytes by Microinjection (미세주입을 이용한 난자로의 분리된 미토콘드리아 전달)

  • Baek, Sang-Ki;Byun, June-Ho;Kim, Bo Gyu;Lee, A ram;Cho, Young-Soo;Kim, Ik-Sung;Seo, Gang-Mi;Chung, Se-Kyo;Lee, Joon-Hee;Woo, Dong Kyun
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1445-1451
    • /
    • 2017
  • Mitochondria play a central role in energy generation by using electron transport coupled with oxidative phosphorylation. They also participate in other important cellular functions including metabolism, apoptosis, signaling, and reactive oxygen species production. Therefore, mitochondrial dysfunction is known to contribute to a variety of human diseases. Furthermore, there are various inherited diseases of energy metabolism due to mitochondrial DNA (mtDNA) mutations. Unfortunately, therapeutic options for these inherited mtDNA diseases are extremely limited. In this regard, mitochondrial replacement techniques are taking on increased importance in developing a clinical approach to inherited mtDNA diseases. In this study, green fluorescence protein (GFP)-tagged mitochondria were isolated by differential centrifugation from a mammalian cell line. Using microinjection technique, the isolated GFP-tagged mitochondria were then transferred to bovine oocytes that were triggered for early development. During the early developmental period from bovine oocytes to blastocysts, the transferred mitochondria were observed using fluorescent microscopy. The microinjected mitochondria were dispersed rapidly into the cytoplasm of oocytes and were passed down to subsequent cells of 2-cell, 4-cell, 8-cell, morula, and blastocyst stages. Together, these results demonstrate a successful in vitro transfer of isolated mitochondria to oocytes and provide a model for mitochondrial replacement implicated in inherited mtDNA diseases and animal cloning.

Plant Regeneration of Bupleurum spp. through Somatic Tissue Culture (자호(紫胡)의 체세포조직배양(體細胞組織培養)에 의한 식물체재분화(植物體再分化))

  • Park, Cheol-Ho;Yu, Chang-Yeon;Kim, Dong-Wook;Cho, Hye-Kyeong;Park, Kyeong-Suk;Seo, Jeong-Sik;Ahn, Sang-Deuk;Jang, Byeong-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.2 no.1
    • /
    • pp.60-66
    • /
    • 1994
  • This study was conducted to determine the optimum conditions of inducing callus, proliferating callus, forming somatic embryos, and regenerating plantlets via somatic embryogenesis, for the purpose of producing artificial seeds and substantially developing plant factory technologies that can be employed to all seasons production of Bupleurum plants. Callus was efficiently induced from leaf tissues at three leaf stage in the MS medium supplemented with 2, 4-D 2mg /1 and thidiazuron(TDZ) 0.lmg /1. Callus induction from leaf tissues at maturity was mostly effective in the mixture of 2,4- D 2mg /1 and TDZ 1.0mg /1 while that from flower bud tissues was fairly good in the MS medium containing 2,4-D 1 or 2mg /1.Callus was formed in 15 to 20 days after culture initiation in the MS media supplemented with 2, 4- D 1-2mg /1 and TDZ 0.l-1.0mg /1. Such hormones as kinetin 3mg /1, GA 1mg /1, and the mixture of GA 1mg /1 and TDZ 1mg /1 effected markedly to proliferate the callus cells.The optimum temperature and light intensity for callus culture were found to be $25^{\circ}C$ and 3000 Lux, respectively. Direct plant regeneration from cultured callus was fairly made on hormone-free MS or half-strength MS medium. Somatic embryogenesis was most frequently observed in hormone-free media:60 somatic embryos per 20ml in MS medium and 28 somatic embryos per 20ml in half -strength MS medium. There were three stages-globular, heart, and torpedo-in development of somatic embryos, among which globular stage was more frequently observed in MS medium rather than in half-strength MS medium. Somatic embryos induced from suspension culture fairly differentiated a number of shoots and roots on hormone-free and half-strength MS solid medium.

  • PDF

Growth enhancement and cytotoxicity of Korean mistletoe fractions on human cell lines (한국산 겨우살이 분획물의 면역세포의 생육증진 및 세포독성)

  • Lee, So-Jin;Lee, Mi-Kyoung;Choi, Geun-Pyo;Yu, Chang-Yeon;Roh, Seong-Kyu;Kim, Jong-Dai;Lee, Hyeon-Yong;Lee, Jin-Ha
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.1
    • /
    • pp.62-70
    • /
    • 2003
  • The biological activities on human immune and cancer cell lines of the four kinds of Korean mistletoes (Korean Viscum album, var. coloratum, : Korean Viscum sp. in Quercus acutissima Carr., Korean Viscum sp. in Castanea crenata, Korean Viscum sp. in Betula platyphylla, and Korean Viscum sp. in Salix koreensis) extracts were investigated. The extracts were preparated with ethanol, and fractionated with n-butanol, ethyl acetate, chloroform, hexane, and second distilled water. Cytotoxic potencies of the fractions on human normal lung cell line (HEL 299) showed under 28% in the concentration of 0.5 mg/ml. Growth inhibition effect of the Korean mistletoe extracts on the several human cancer cell lines depends on the concentration of the extracts, and extracting solvent. The hexane, chloroform, and ethyl acetate fractions indicated a strong anticancer activity, but not in aqueous and butanol fractions. Some mistletoe fractions have a different characteristic on the cancer cell lines. Stimulation on the growth of human immuno cell lines(B cell : Raji, T cell: Jurkat) of the extracts were confirmed in the ethyl acetate, chloroform, hexane fractions, but not in aqueous system.

A novel cold-active lipase from Psychrobacter sp. ArcL13: gene identification, expression in E. coli, refolding, and characterization (새로운 Psychrobacter sp. ArcL13 유래 저온활성 지질분해효소 : 유전자 분리동정, 대장균에서의 발현, refolding 및 특성 연구)

  • Koo, Bon-Hun;Moon, Byung-Hern;Shin, Jong-Suh;Yim, Joung-Han
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.192-201
    • /
    • 2016
  • Recently, Psychrobacter sp. ArcL13 strain showing the extracellular lipase activity was isolated from the Chuckchi Sea of the Arctic Ocean. However, due to the low expression levels of the enzyme in the natural strain, the production of recombinant lipase is crucial for various applications. Identification of the gene for the enzyme is prerequisite for the production of the recombinant protein. Therefore, in the present study, a novel lipase gene (ArcL13-Lip) was isolated from Psychrobacter sp. ArcL13 strain by gene prospecting using PCR, and its complete nucleotide sequence was determined. Sequence analysis showed that ArcL13-Lip has high amino acid sequence similarity to lipases from bacteria of some Psychrobacter genus (84-90%) despite low nucleotide sequence similarity. The lipase gene was cloned into the bacterial expression plasmid and expressed in E. coli. SDS-PAGE analysis of the cells showed that ArcL13-Lip was expressed as inclusion bodies with a molecular mass of about 35 kDa. Refolding was achieved by diluting the unfolded protein into refolding buffers containing various additives, and the highest refolding efficiency was seen in the glucose-containing buffer. Refolded ArcL13-Lip showed high hydrolytic activity toward p-nitrophenyl caprylate and p-nitrophenyl decanoate among different p-nitrophenyl esters. Recombinant ArcL13-Lip displayed maximal activity at $40^{\circ}C$ and pH 8.0 with p-nitrophenyl caprylate as a substrate. Activity assays performed at various temperatures showed that ArcL13-Lip is a cold-active lipase with about 40% and 73% of enzymatic activity at $10^{\circ}C$ and $20^{\circ}C$, respectively, compared to its maximal activity at $40^{\circ}C$.

Bioleaching of Mn(II) from Manganese Nodules by Bacillus sp. MR2 (Bacillus sp. MR2에 의한 망간단괴의 생물용출)

  • Choi, Sung-Chan;Lee, Ga-Hwa;Lee, Hong-Keum
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.411-415
    • /
    • 2009
  • Some microorganisms are capable of leaching Mn(II) from nonsulfidic manganese ores indirectly via nonenzymatic processes. Such reductive dissolution requires organic substrates, such as glucose, sucrose, or galactose, as a source of carbon and energy for microbial growth. This study investigated characteristics of Mn(II) leaching from manganese nodules by using heterotrophic Bacillus sp. strain MR2 provided with corn starch as a less-expensive substrate. Leaching of Mn(II) at 25.6 g Mn(II) $kg^{-1}$ nodule $day^{-1}$ was accompanied with cell growth, but part of the produced Mn(II) re-adsorbed onto residual $MnO_2$ particles after 24 h. Direct contact of cells to manganese nodule was not necessary as a separation between them with a dialysis tube produced similar amount [24.6 g Mn(II) $kg^{-1}$ nodule $day^{-1}$]. These results indicated an involvement of extracellular diffusible compound(s) during Mn(II) leaching by strain MR2. In order to optimize a leaching process we tested factors that influence the reaction, and the most efficient conditions were $25\sim35^{\circ}C$, pH 5~7, inoculum density of 1.5~2.5% (v/v), pulp density of 2~3 g/L, and particle size <75 ${\mu}m$. Although Mn(II) leaching was enhanced as particle size decrease, we suggest <212 ${\mu}m$ as a proper size range since more grinding means more energy consumption The results would help for the improvement of bioleaching of manganese nodule as a less expensive, energy-efficient, and environment-friendly technology as compared to the existing physicochemical metal recovery technologies.