DOI QR코드

DOI QR Code

Inhibition of Adipocyte Differentiation through G1 Arrest by Extract of Sophora tonkinensis Gapnep in 3T3-L1 Preadipocytes

산두근 추출물의 세포주기 정지를 통한 3T3-L1 지방전구세포의 분화 억제

  • Jeong, Hyun-Young (Department of Life Science and Biotechnology, College of Natural Science, Dong-Eui University) ;
  • Hyun, Sook-Kyung (Department of Food Nutrition, College of Human Ecology, Dong-Eui University) ;
  • Choi, Yung-Hyun (Department of Physiology and Biochemistry, College of Oriental Medicine, Dong-Eui University) ;
  • Kim, Byung-Woo (Department of Life Science and Biotechnology, College of Natural Science, Dong-Eui University) ;
  • Kwon, Hyun-Ju (Department of Life Science and Biotechnology, College of Natural Science, Dong-Eui University)
  • Received : 2011.08.22
  • Accepted : 2011.08.29
  • Published : 2011.09.30

Abstract

Sophora tonkinensis Gapnep has been used as a traditional herbal medicine in oriental regions since ancient times. In this study, the effect and mechanism of the MeOH extract of Sophora tonkinensis Gapnep (STME) on adipocite differentiation and adipogenesis in 3T3-L1 preadipocites were investigated. Treatment with STME in the concentration range of 0-200 ${\mu}g$/ml significantly inhibited the differentiation of 3T3-L1 preadipocites in a dose-dependent manner, as determined by a decrease in intracellular lipid droplets and lipid contents measured by Oil Red O staining. In association with the inhibitory effect of lipid accumulation, the expressions of the proteins concerned with adipogenesis in 3T3-L1 preadipocites were also investigated. Treatment with STME reduced the expressions of peroxisome proliferator-activated receptor ${\gamma}$ (PPAR${\gamma}$), cytidine-cytidine-adenosine-adenosine-thymine (CCAAT)/enhancer-binding proteins ${\alpha}$ and ${\beta}$ (C/EBP${\alpha}$ and C/EBP${\beta}$) and sterol regulatory element binding protein (SREBP), which are adipocyte specific markers. In flow cytometry analysis, the inhibitory effect of differentiation was caused by G1 arrest and following mitotic clonal expansion cease. Therefore, we also investigated the alteration of G1 phase arrest-related proteins. As a result, the expression of p21 protein was significantly increased, while the expressions of Cdk2, E2F-1 and phospho-Rb were reduced in a dose-dependent manner in STME treated 3T3-L1 cells. According to these results, STME might inhibit differentiation through G1 arrest in 3T3-L1 preadipocytes adipogenesis, and further studies, which are in progress, have to be completed to identify the active compounds.

산두근(Sophora tonkinensis Gapnep)은 예로부터 동양지역에서 전통적인 약용식물로 사용되어 왔다. 본 연구에서는 3T3-L1 지방전구세포의 성숙지방세포로의 분화와 세포 내 지방생성에 대한 산두근 메탄올 추출물(STME)의 효과와 메커니즘에 대해 조사하였다. STME를 0-200 ${\mu}g$/ml의 농도로 처리한 다음, Oil Red O 염색으로 세포 내축적되는 지방구와 지질의 양을 측정한 결과 농도의존적으로 크게 감소됨을 확인하였으며 3T3-L1 지방전구세포의 분화와 관련된 단백질의 발현의 변화를 조사하였다. 지방세포의 특이적 marker인 peroxisome proliferator-activated receptor ${\gamma}$ (PPAR${\gamma}$), cytidine-cytidine-adenosine-adenosine-thymine (CCAAT)/enhancer-binding proteins ${\alpha}$, ${\beta}$ (C/EBP${\alpha}$, C/EBP${\beta}$) 그리고 sterol regulatory element binding protein (SREBP)의 발현이 STME를 처리하였을 때 현저하게 저해됨을 확인하였다. 세포주기의 변화를 분석한 결과 STME는 지방세포 분화초기 단계인 mitotic clonal expansion 단계에서 G1기로 세포주기를 정지시켰다. 더불어 G1 arrest와 관련된 단백질의 변화를 조사 한 결과, 3T3-L1 세포에 STME를 처리하였을 때 p21의 발현량이 확연하게 증가하였으며, Cdk2, E2F-1 그리고 phosphor-Rb의 발현량은 농도의존적으로 감소하였다. 이러한 결과들에 의하여 STME은 메탄올 추출물임에도 불구하고 3T3-L1 지방전구세포가 성숙지방세포로 분화할 때 G1 arrest를 통하여 지방세포 분화를 억제하며 관련 유전자의 발현 억제도 확연하게 확인할 수 있었으며, 이러한 결과는 항 비만 천연물 소재 탐구의 기초자료로 유용하게 쓰일 것으로 사료된다.

Keywords

References

  1. Bae, J. H. 2004. Antimicrobial effect of Indigofera Kirilowii extraction food-borne pathoegen. J. Korean. Soc. Food. Sci. Nutr. 33, 1106-1111. https://doi.org/10.3746/jkfn.2004.33.7.1106
  2. Brun, R. P., J. B. Kim, E. Hu, S. Altiok, and B. M. Spiegelman. 1996. Adipocyte differentiation : a transcriptional regulatory cascade. Curr. Opin. Cell Biol. 8, 826-832. https://doi.org/10.1016/S0955-0674(96)80084-6
  3. Fajas, L., J. C. Fruchart, and J. Auwerx. 1998. Transcriptional control of adpogenesis. Curr. Opin. Cell Biol. 10. 165-173. https://doi.org/10.1016/S0955-0674(98)80138-5
  4. Grandy, S. H. 2004. Obesity, metabolic syndrome, and cardiovascular disease. J. Clin. Endocrinol. Metabol. 89, 2595-2600. https://doi.org/10.1210/jc.2004-0372
  5. Green, H. and O. Kehinde. 1974. Sublines of mouse 3T3 cells that accumulate lipid. Cell 1, 113-116. https://doi.org/10.1016/0092-8674(74)90126-3
  6. Green, H. and M. Meuth. 1974. An established pre-adipose cell line and its differentiation in culture. Cell 3, 127-133. https://doi.org/10.1016/0092-8674(74)90116-0
  7. Green, H. and O. Kehinde. 1975. An established pre-adipose cell line and its differentiation in culture II. Factors affection the adipose conversion. Cell 5, 19-27. https://doi.org/10.1016/0092-8674(75)90087-2
  8. Green, H. and O. Kehinde. 1976. Spontaneous heritable changes leading to increased adipose conversion in 3T3 cells. Cell 7, 105-113. https://doi.org/10.1016/0092-8674(76)90260-9
  9. Gregoire, F. M., M. S. Cynthia, and H. S. Sul. 1998. Understanding adipocyte differentiation. Physiol. Rev. 78, 783-809.
  10. Holm, C. 2003. Molecular mechanisms regulation hormone sensitive lipase and lipolysis. Biochem. Soc. Trans. 31, 1120-1124. https://doi.org/10.1042/BST0311120
  11. Kim, K. T., H. S. Eom, and G. Y. Chi. 2004. Anti-proliferative effect of RST associated with the inhibition of cyclooxygenase-2 expression and prostaglandin E2 release in human lung carcinoma cells. Korean J. Ori. Med. Phywiol. Pathol. 21, 907-915.
  12. Kim, S. H., H. S. Park, M. S. Lee, Y. J. Cho, Y. S. Kim, J. T. Hwang, M. J. Sung, M. S. Kim, and D. Y. Kwon. 2008. Vitisin A inhibits adipocyte differentiation through cell cycle arrest in 3T3-L1 cells. Biochem. Biophys. Res. Commun 372, 108-113. https://doi.org/10.1016/j.bbrc.2008.04.188
  13. Kopelman, P. G. 2000. Obesity as a medical problem. Nature 404, 635-643.
  14. Must, A., J. Spadano, E. H. Coakley, A. E. Field, G. Colditz, and W. Dietz. 1999. The disease burden associated with overweight and obesity. JAMA. 282, 1523-1529. https://doi.org/10.1001/jama.282.16.1523
  15. Otto, T. C. and M. D. Lane. 2005. Adipose development : from stem cell to adipocyte. Crit. Rev. Biochem. Mol. Biol. 16, 145-171.
  16. Pae, H. O., C. K. Lim, S. I. Jang, D. M. Han, A. W. Gun, S. Y. Yoon, B. H. Chon, W. S. Kim, and Y. G. Yun. 2003. Review of anti-leukemia effects from medicinal plants. Korean J. Ori. Med. Phywiol. Pathol. 17, 605-610.
  17. Qiu, Z., Y. Wei, N. Chen, M. Jiang, J. Wu, and K. Liao. 2001. DNA synthesis and mitotic clonal expansion is not a required step for 3T3-L1 preadipocyte differentiation into adipocytes. J. Biol. Chem. 276, 11988-11995. https://doi.org/10.1074/jbc.M011729200
  18. Rinignac, L. A., M. P. Leibovitch, M. Kitzmann, A. Fernandez, and B. Ducommun. 2000. Cyclin E-Cdk2 phosporylation promotes late G1-phase degradation of MyoD in muscle cells. Exp. Cell. Res. 259, 300-307. https://doi.org/10.1006/excr.2000.4973
  19. Rodriguez, A. M., C. Elabd, F. Delteil, J. Astier, C. Vernocher, P. S. Marc, J. Guesnet, A. Guezennec, E. Z. Amri, C. Dani, and G. Ailhaud. 2004. Adipocyte differentiation of multipotents cells established from human adipose tissue. Biochem. Biophys. Res. Commun 315, 255-263. https://doi.org/10.1016/j.bbrc.2004.01.053
  20. Rosen, E. D. and M. S. Bruce. 2000. Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol. 16, 145-171. https://doi.org/10.1146/annurev.cellbio.16.1.145
  21. Saitoa, T., D. Abea, and K. Sekiya. 2009. Flavanone exhibits PPAR$\gamma$ ligand activity and enhances differentiation of 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun 380, 281-285. https://doi.org/10.1016/j.bbrc.2009.01.058
  22. Sherr, C. J. and J. M. Roberts. 1995. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9, 1149-1163. https://doi.org/10.1101/gad.9.10.1149
  23. Tanaka, T., N. Yoshida, T. Kishimoto, and S. Akira. 1997. Defective adpocyte differentiation in mice lacking the C/ECPbeta and/or C/ECPdelta gene. EMBO. J. 16, 7432-7443. https://doi.org/10.1093/emboj/16.24.7432
  24. Tang, Q. Q. and M. D. Lane. 1999. Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev. 13, 2231-2241. https://doi.org/10.1101/gad.13.17.2231
  25. Tang, Q. Q., T. C. Otto, and M. D. Lane. 2003. Mitotic clonal expansion: A synchronous process required for adpogenesis. Proc. Natl. Acad. Sci. USA 100, 44-49. https://doi.org/10.1073/pnas.0137044100
  26. Wu, Z., Y. Xie, and N. L. Bucher. 1995. Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes Dev. 9, 2350-2363. https://doi.org/10.1101/gad.9.19.2350
  27. Weinberg, R. A. 1995. The retinoblastoma protein and cell cycle control. Cell 81, 323-330. https://doi.org/10.1016/0092-8674(95)90385-2
  28. Yook, C. S. 1997. Colored medicinal plants of Korea. Academy Publishing Co. Inc., Seoul, Korea.
  29. Zhang, J. W., Q. Q. Tang, C. Vinson, and M. D. Lane. 2004. Dominant-negative C/EBP disrupts mitotic clonal expansion and differentiation of 3T3-L1 preadipocytes. Proc. Natl. Acad. Sci. USA 101, 43-47. https://doi.org/10.1073/pnas.0307229101