• Title/Summary/Keyword: -catenin pathway

검색결과 145건 처리시간 0.021초

Wnt/β-Catenin Signaling Pathway Is Necessary for the Specification but Not the Maintenance of the Mouse Retinal Pigment Epithelium

  • Jong-Myeong Kim;Kwang Wook Min;You-Joung Kim;Ron Smits;Konrad Basler;Jin Woo Kim
    • Molecules and Cells
    • /
    • 제46권7호
    • /
    • pp.441-450
    • /
    • 2023
  • β-Catenin (Ctnnb1) has been shown to play critical roles in the development and maintenance of epithelial cells, including the retinal pigment epithelium (RPE). Ctnnb1 is not only a component of intercellular junctions in the epithelium, it also functions as a transcriptional regulator in the Wnt signaling pathway. To identify which of its functional modalities is critically involved in mouse RPE development and maintenance, we varied Ctnnb1 gene content and activity in mouse RPE lineage cells and tested their impacts on mouse eye development. We found that a Ctnnb1 double mutant (Ctnnb1dm), which exhibits impaired transcriptional activity, could not replace Ctnnb1 in the RPE, whereas Ctnnb1Y654E, which has reduced affinity for the junctions, could do so. Expression of the constitutively active Ctnnb1∆ex3 mutant also suppressed the development of RPE, instead facilitating a ciliary cell fate. However, the post-mitotic or mature RPE was insensitive to the loss, inactivation, or constitutive activation of Ctnnb1. Collectively, our results suggest that Ctnnb1 should be maintained within an optimal range to specify RPE through transcriptional regulation of Wnt target genes in the optic neuroepithelium.

Differential effects of type 1 diabetes mellitus and subsequent osteoblastic β-catenin activation on trabecular and cortical bone in a mouse mode

  • Chen, Sixu;Liu, Daocheng;He, Sihao;Yang, Lei;Bao, Quanwei;Qin, Hao;Liu, Huayu;Zhao, Yufeng;Zong, Zhaowen
    • Experimental and Molecular Medicine
    • /
    • 제50권12호
    • /
    • pp.3.1-3.14
    • /
    • 2018
  • Type 1 diabetes mellitus (T1DM) is a pathological condition associated with osteopenia. $WNT/{\beta}$-catenin signaling is implicated in this process. Trabecular and cortical bone respond differently to $WNT/{\beta}$-catenin signaling in healthy mice. We investigated whether this signaling has different effects on trabecular and cortical bone in T1DM. We first established a streptozotocin-induced T1DM mouse model and then constitutively activated ${\beta}$-catenin in osteoblasts in the setting of T1DM (T1-CA). The extent of bone loss was greater in trabecular bone than that in cortical bone in T1DM mice, and this difference was consistent with the reduction in the expression of ${\beta}$-catenin signaling in the two bone compartments. Further experiments demonstrated that in T1DM mice, trabecular bone showed lower levels of insulin-like growth factor-1 receptor (IGF-1R) than the levels in cortical bone, leading to lower $WNT/{\beta}$-catenin signaling activity through the inhibition of the IGF-1R/Akt/glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$) pathway. After ${\beta}$-catenin was activated in T1-CA mice, the bone mass and bone strength increased to substantially greater extents in trabecular bone than those in cortical bone. In addition, the cortical bone of the T1-CA mice displayed an unexpected increase in bone porosity, with increased bone resorption. The downregulated expression of WNT16 might be responsible for these cortical bone changes. In conclusion, we found that although the activation of $WNT/{\beta}$-catenin signaling increased the trabecular bone mass and bone strength in T1DM mice, it also increased the cortical bone porosity, impairing the bone strength. These findings should be considered in the future treatment of T1DM-related osteopenia.

Secondary Structure, 1H, 13C and 15N Resonance Assignments and Molecular Interactions of the Dishevelled DIX Domain

  • Capelluto, Daniel G.S.;Overduin, Michael
    • BMB Reports
    • /
    • 제38권2호
    • /
    • pp.243-247
    • /
    • 2005
  • Dishevelled (Dvl) is a positive regulator of the canonical Wnt signaling pathway, which regulates the levels of $\beta$-catenin. The $\beta$-catenin oncoprotein depends upon the association of Dvl and Axin proteins through their DIX domains, and its accumulation directs the expression of specific developmental-related genes at the nucleus. Here, the $^1H$, $^{13}C$, and $^{15}N$ resonances of the human Dishevelled 2 DIX domain are assigned using heteronuclear nuclear magnetic resonance (NMR) spectroscopy. In addition, helical and extended elements are identified based on the NMR data. The results establish a structural context for characterizing the actin and phospholipid interactions and binding sites of this novel domain, and provide insights into its role in protein localization to stress fibers and cytoplasmic vesicles during Wnt signaling.

The Improvement of skin barrier function and anti-obesity effect of Codonopsis lanceolata by supercritical carbon dioxide extraction

  • Kim, Bora
    • 한국응용과학기술학회지
    • /
    • 제37권4호
    • /
    • pp.674-681
    • /
    • 2020
  • The root of Codonopsis lanceolata has been used in traditional medicine. This study was conducted to confirm the comparative effect of ethanol solvent extraction (CLE) and supercritical carbon dioxide extraction (CLS) of C. lanceolata roots. CLS had higher antioxidant than CLE. For supercritical co-solvent modified carbon dioxide extraction (CLS), it were extracted at 250 bar 50℃ 150 min at a flow rate of ethyl alcohol 3 mL/min for 90min. In addition, CLS inhibited the adipocyte differentiation of 3T3-L1 cells. When treated with the extract at a concentration of 100 ㎍/mL, the Wnt/β-catenin pathway reporter luciferase activity of HEK 293-TOP cells increased approximately by 3-folds compared to that of the untreated control group. Also, the treatment by CLS (50 ㎍/mL) showed a significant increase of involucrin expression. These results indicate that supercritical carbon dioxide extract of C. lanceolatamay serve as a cosmeceutical agent for improving skin barrier function and the treatment of obesity.

Myristoleic Acid Promotes Anagen Signaling by Autophagy through Activating Wnt/β-Catenin and ERK Pathways in Dermal Papilla Cells

  • Choi, Youn Kyung;Kang, Jung-Il;Hyun, Jin Won;Koh, Young Sang;Kang, Ji-Hoon;Hyun, Chang-Gu;Yoon, Kyung-Sup;Lee, Kwang Sik;Lee, Chun Mong;Kim, Tae Yang;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • 제29권2호
    • /
    • pp.211-219
    • /
    • 2021
  • Alopecia is a distressing condition caused by the dysregulation of anagen, catagen, and telogen in the hair cycle. Dermal papilla cells (DPCs) regulate the hair cycle and play important roles in hair growth and regeneration. Myristoleic acid (MA) increases Wnt reporter activity in DPCs. However, the action mechanisms of MA on the stimulation of anagen signaling in DPCs is not known. In this study, we evaluated the effects of MA on anagen-activating signaling pathways in DPCs. MA significantly increased DPC proliferation and stimulated the G2/M phase, accompanied by increasing cyclin A, Cdc2, and cyclin B1. To elucidate the mechanism by which MA promotes DPC proliferation, we evaluated the effect of MA on autophagy and intracellular pathways. MA induced autophagosome formation by decreasing the levels of the phospho-mammalian target of rapamycin (phospho-mTOR) and increasing autophagy-related 7 (Atg7) and microtubule-associated protein 1A/1B-light chain 3II (LC3II). MA also increased the phosphorylation levels of Wnt/β-catenin proteins, such as GSK3β (Ser9) and β-catenin (Ser552 and Ser675). Treatment with XAV939, an inhibitor of the Wnt/β-catenin pathway, attenuated the MA-induced increase in β-catenin nuclear translocation. Moreover, XAV939 reduced MA-induced effects on cell cycle progression, autophagy, and DPC proliferation. On the other hand, MA increased the levels of phospho (Thr202/Tyr204)-extracellular signal regulated kinases (ERK). MA-induced ERK phosphorylation led to changes in the expression levels of Cdc2, Atg7 and LC3II, as well as DPC proliferation. Our results suggest that MA promotes anagen signaling via autophagy and cell cycle progression by activating the Wnt/β-catenin and ERK pathways in DPCs.

사람 모유두세포에서 PI3K/Akt와 Wnt/β-catenine 신호전달을 경유한 저령추출물의 세포증식 효과 (Proliferative Activity of Polyporus umbellatus Extract from Mushrooms via the PI3K/Akt and Wnt/β-catenine signaling in HHDPCs)

  • 강리아민주;강석종;문연자
    • 대한본초학회지
    • /
    • 제39권1호
    • /
    • pp.23-29
    • /
    • 2024
  • Objectives : Polyporus umbellatus is a medicinal mushroom that has been used for over thousands years in Chinese medicine as a powerful diuretic to relieve fluid retention and edema. Dermal papilla is located at the bottom of the hair follicle and connected to the blood vessels where it gets the nutrients and oxygen to nurture hair follicle. This study examined the mechanism through which the ethanol extract of Polyporus umbellatus (EPU) promoted the proliferation of human dermal papilla cells (HHDPCs). Methods : To estimate the proliferative effects of EPU on HHDPCs, cell viability was estimated by thiazolyl blue tetrazolium bromide (MTT) assay. Western blotting was used to investgate the activation of ERK, phosphoinositide 3-kinase (PI3K)/Akt, β-catenin, GSK-3β and heme oxygenase-1 (HO-1). Cells were treated with inhibitors of ERK and Akt prior to EPU treatment. Results : EPU promoted the proliferation of HHDPCs and the phosphorylation of ERK and Akt in dose dependent manner. However, the proliferative effect of EPU on HHDPCs was inhibited by pre-treatment of ERK inhibitor (PD98059) and Akt inhibitor (LY294002). Furthermore, EPU respectively stimulated the protein expression of β-catenin and phosphorylated GSK-3β. EPU significantly increased the protein expression levels of proliferation and cytoprotection related genes such as Bcl-2, SIRT-1, and HO-1 in cells. Conclusion : This results suggest that EPU promoted the proliferation of HHDPCs via activating PI3K/Akt and Wnt/β-catenin signaling pathway in HHDPCs.

20(S)-protopanaxadiol and oleanolic acid ameliorate cognitive deficits in APP/PS1 transgenic mice by enhancing hippocampal neurogenesis

  • Lin, Kaili;Sze, Stephen Cho-Wing;Liu, Bin;Zhang, Zhang;Zhang, Zhu;Zhu, Peili;Wang, Ying;Deng, Qiudi;Yung, Ken Kin-Lam;Zhang, Shiqing
    • Journal of Ginseng Research
    • /
    • 제45권2호
    • /
    • pp.325-333
    • /
    • 2021
  • Background: Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders. Enhancing hippocampal neurogenesis by promoting proliferation and differentiation of neural stem cells (NSCs) is a promising therapeutic strategy for AD. 20(S)-protopanaxadiol (PPD) and oleanolic acid (OA) are small, bioactive compounds found in ginseng that can promote NSC proliferation and neural differentiation in vitro. However, it is currently unknown whether PPD or OA can attenuate cognitive deficits by enhancing hippocampal neurogenesis in vivo in a transgenic APP/PS1 AD mouse model. Here, we administered PPD or OA to APP/PS1 mice and monitored the effects on cognition and hippocampal neurogenesis. Methods: We used the Morris water maze, Y maze, and open field tests to compare the cognitive capacities of treated and untreated APP/PS1 mice. We investigated hippocampal neurogenesis using Nissl staining and BrdU/NeuN double labeling. NSC proliferation was quantified by Sox2 labeling of the hippocampal dentate gyrus. We used western blotting to determine the effects of PPD and OA on Wnt/GSK3β/β-catenin pathway activation in the hippocampus. Results: Both PPD and OA significantly ameliorated the cognitive impairments observed in untreated APP/PS1 mice. Furthermore, PPD and OA significantly promoted hippocampal neurogenesis and NSC proliferation. At the mechanistic level, PPD and OA treatments resulted in Wnt/GSK-3β/β-catenin pathway activation in the hippocampus. Conclusion: PPD and OA ameliorate cognitive deficits in APP/PS1 mice by enhancing hippocampal neurogenesis, achieved by stimulating the Wnt/GSK-3β/β-catenin pathway. As such, PPD and OA are promising novel therapeutic agents for the treatment of AD and other neurodegenerative diseases.

Effect of Genistein on the Wnt Signaling Pathway and Cell Growth

  • Moon, Hyun-Ju;Ryu, Sung-Yeoul;Kang, Tae-Seok;Kang, Ho-ll;Kang, ll-Hyun;Kim, Tae-Sung;Hong, Jin;Han, Soon-Young;Choi, Kang-Yell;Kwon, Ki-Sung
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2005년도 춘계 국제심포지엄 및 학술대회
    • /
    • pp.189-189
    • /
    • 2005
  • PDF

Gene Silencing of β-catenin by RNAi Inhibits Proliferation of Human Esophageal Cancer Cells by Inducing G0/G1 Cell Cycle Arrest

  • Wang, Jin-Sheng;Ji, Ai-Fang;Wan, Hong-Jun;Lu, Ya-Li;Yang, Jian-Zhou;Ma, Li-Li;Wang, Yong-Jin;Wei, Wu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2527-2532
    • /
    • 2012
  • Objectives: The aim of the present study was to explore mechanisms underlying the effects of down-regulating ${\beta}$-catenin expression on esophageal carcinoma (EC) cells. Methods: Cell cycle distribution and apoptosis were determined using flow cytometry and annexin V apoptosis assay, respectively. Transmission electron microscopy (TEM) was used to examine changes in ultrastructure, while expression of cyclin D1 protein and mRNA was detected by western blot and real-time PCR. Proliferating cell nuclear antigen (PCNA) and extracellular signal-regulated kinase (ERK) 1-2 were evaluated by Western blot analysis. PCNA labeling index (LI) was determined by immunocytochemistry. Results: Compared with pGen-3-con transfected and Eca-109 cells, the percentage of G0/G1-phase pGen-3-CTNNB1 transfected cells was obviously increased (P<0.05), with no significant difference among the three groups with regard to apoptosis (P>0.05). pGen-3-CTNNB1 transfected cells exhibited obvious decrease in cyclin D1 mRNA and protein expression (P<0.05) and the ultrastructure of Eca-109 cells underwent a significant change after being transfected with pGen-3-CTNNB1, suggesting that down-regulating ${\beta}$-catenin expression can promote the differentiation and maturation. The expression of PCNA and the ERKI/2 phosphorylation state were also down-regulated in pGen-3-CTNNB1 transfected cells (P<0.05). At the same time, the PCNA labeling index was decreased accordingly (P<0.05). Conclusion: Inhibition of EC Eca-109 cellproliferation by down-regulating ${\beta}$-catenin expression could improve cell ultrastructure by mediating blockade in G0/G1 through inhibiting cyclin D1, PCNA and the MAPK pathway (p-ERK1/2).