• Title/Summary/Keyword: U.A.V

Search Result 1,745, Processing Time 0.028 seconds

NONTRIVIAL SOLUTIONS FOR AN ELLIPTIC SYSTEM

  • Nam, Hyewon;Lee, Seong Cheol
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.153-161
    • /
    • 2015
  • In this work, we consider an elliptic system $$\left{\array {-{\Delta}u=au+bv+{\delta}_1u+-{\delta}_2u^-+f_1(x,u,v) && in\;{\Omega},\\-{\Delta}v=bu+cv+{\eta}_1v^+-{\eta}_2v^-+f_2(x,u,v) && in\;{\Omega},\\{\hfill{70}}u=v=0{\hfill{90}}on\;{\partial}{\Omega},}$$, where ${\Omega}{\subset}R^N$ be a bounded domain with smooth boundary. We prove that the system has at least two nontrivial solutions by applying linking theorem.

LOCAL AND GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS TO A POLYTROPIC FILTRATION SYSTEM WITH NONLINEAR MEMORY AND NONLINEAR BOUNDARY CONDITIONS

  • Wang, Jian;Su, Meng-Long;Fang, Zhong-Bo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.37-56
    • /
    • 2013
  • This paper deals with the behavior of positive solutions to the following nonlocal polytropic filtration system $$\{u_t=(\mid(u^{m_1})_x{\mid}^{{p_1}^{-1}}(u^{m_1})_x)_x+u^{l_{11}}{{\int_0}^a}v^{l_{12}}({\xi},t)d{\xi},\;(x,t)\;in\;[0,a]{\times}(0,T),\\{v_t=(\mid(v^{m_2})_x{\mid}^{{p_2}^{-1}}(v^{m_2})_x)_x+v^{l_{22}}{{\int_0}^a}u^{l_{21}}({\xi},t)d{\xi},\;(x,t)\;in\;[0,a]{\times}(0,T)}$$ with nonlinear boundary conditions $u_x{\mid}{_{x=0}}=0$, $u_x{\mid}{_{x=a}}=u^{q_{11}}u^{q_{12}}{\mid}{_{x=a}}$, $v_x{\mid}{_{x=0}}=0$, $v_x|{_{x=a}}=u^{q21}v^{q22}|{_{x=a}}$ and the initial data ($u_0$, $v_0$), where $m_1$, $m_2{\geq}1$, $p_1$, $p_2$ > 1, $l_{11}$, $l_{12}$, $l_{21}$, $l_{22}$, $q_{11}$, $q_{12}$, $q_{21}$, $q_{22}$ > 0. Under appropriate hypotheses, the authors establish local theory of the solutions by a regularization method and prove that the solution either exists globally or blows up in finite time by using a comparison principle.

인터뷰 - T$\ddot{U}$V S$\ddot{U}$D Korea/라이너 블록 Reiner Block 대표이사

  • 한국원자력산업회의
    • Nuclear industry
    • /
    • v.29 no.7
    • /
    • pp.58-60
    • /
    • 2009
  • 시험 검사 인증 기술 컨설팅 분야의 세계적인 서비스 기업인 T$\ddot{U}$V S$\ddot{U}$D 그룹의 한국 법인인 T$\ddot{U}$V S$\ddot{U}$D Korea가 최근 원자력 기기 및 시스템 설계 엔지니어링 기업인 (주)GNEC를 인수, 합병하면서 국내 원자력 시장에 성큼 진출하는 한편 우리나라 원자력사업의 해외 시장 진출을 적극적으로 도울 계획을 세우고 있다. 라이너 블록 사장은 GNEC 인수 후 기자회견을 통해 "원자력 기기 및 설계, 교육 및 엔지니어링 서비스 등 관련 기술 지원에 앞장서 국내 에너지 산업의 활성화에 앞장서는 것을 물론 국내 원자력 산업의 해외 진출을 지원하면서 중국, 인도 및 중국 등 아시아 시장에 적극 진출할 것" 이라고 말하고 "원전 관련 기술을 갖고 있는 다른 기업에 대해서도 향후 인수 합병(M&A)에 나설 계획"이라고 밝혔다. T$\ddot{U}$V S$\ddot{U}$D Korea가 GNEC 인수를 마무리한 시점인 지난 10월 19일, 한강이 내려다보이는 여의도 대한생명 63빌딩 12층 T$\ddot{U}$V S$\ddot{U}$D Korea 사장실에서 라이너 블록 사장을 만났다. 인터뷰 자리에는 이번 GNEC 합병에 큰 역할을 한 김두일 T$\ddot{U}$V S$\ddot{U}$D 고문이 배석하여 인터뷰를 도왔다.

  • PDF

POSITIVE RADIAL SOLUTIONS FOR A CLASS OF ELLIPTIC SYSTEMS CONCENTRATING ON SPHERES WITH POTENTIAL DECAY

  • Carriao, Paulo Cesar;Lisboa, Narciso Horta;Miyagaki, Olimpio Hiroshi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.839-865
    • /
    • 2013
  • We deal with the existence of positive radial solutions concentrating on spheres for the following class of elliptic system $$\large(S) \hfill{400} \{\array{-{\varepsilon}^2{\Delta}u+V_1(x)u=K(x)Q_u(u,v)\;in\;\mathbb{R}^N,\\-{\varepsilon}^2{\Delta}v+V_2(x)v=K(x)Q_v(u,v)\;in\;\mathbb{R}^N,\\u,v{\in}W^{1,2}(\mathbb{R}^N),\;u,v&gt;0\;in\;\mathbb{R}^N,}$$ where ${\varepsilon}$ is a small positive parameter; $V_1$, $V_2{\in}C^0(\mathbb{R}^N,[0,{\infty}))$ and $K{\in}C^0(\mathbb{R}^N,[0,{\infty}))$ are radially symmetric potentials; Q is a $(p+1)$-homogeneous function and p is subcritical, that is, 1 < $p$ < $2^*-1$, where $2^*=2N/(N-2)$ is the critical Sobolev exponent for $N{\geq}3$.

MULTIPLICITY OF SOLUTIONS FOR BIHARMONIC ELLIPTIC SYSTEMS INVOLVING CRITICAL NONLINEARITY

  • Lu, Dengfeng;Xiao, Jianhai
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1693-1710
    • /
    • 2013
  • In this paper, we consider the biharmonic elliptic systems of the form $$\{{\Delta}^2u=F_u(u,v)+{\lambda}{\mid}u{\mid}^{q-2}u,\;x{\in}{\Omega},\\{\Delta}^2v=F_v(u,v)+{\delta}{\mid}v{\mid}^{q-2}v,\;x{\in}{\Omega},\\u=\frac{{\partial}u}{{\partial}n}=0,\; v=\frac{{\partial}v}{{\partial}n}=0,\;x{\in}{\partial}{\Omega},$$, where ${\Omega}{\subset}\mathbb{R}^N$ is a bounded domain with smooth boundary ${\partial}{\Omega}$, ${\Delta}^2$ is the biharmonic operator, $N{\geq}5$, $2{\leq}q$ < $2^*$, $2^*=\frac{2N}{N-4}$ denotes the critical Sobolev exponent, $F{\in}C^1(\mathbb{R}^2,\mathbb{R}^+)$ is homogeneous function of degree $2^*$. By using the variational methods and the Ljusternik-Schnirelmann theory, we obtain multiplicity result of nontrivial solutions under certain hypotheses on ${\lambda}$ and ${\delta}$.

MULTIPLICITY OF NONTRIVIAL SOLUTIONS TO PERTURBED SCHRÖDINGER SYSTEM WITH MAGNETIC FIELDS

  • Zhang, Huixing;Liu, Wenbin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1311-1326
    • /
    • 2012
  • We are concerned with the multiplicity of semiclassical solutions of the following Schr$\ddot{o}$dinger system involving critical nonlinearity and magnetic fields $$\{-({\varepsilon}{\nabla}+iA(x))^2u+V(x)u=H_u(u,v)+K(x)|u|^{2*-2}u,\;x{\in}\mathbb{R}^N,\\-({\varepsilon}{\nabla}+iB(x))^2v+V(x)v=H_v(u,v)+K(x)|v|^{2*-2}v,\;x{\in}\mathbb{R}^N,$$ where $2^*=2N/(N-2)$ is the Sobolev critical exponent and $i$ is the imaginary unit. Under proper conditions, we prove the existence and multiplicity of the nontrivial solutions to the perturbed system.

Best simultaneous approximations from a convex subset

  • Park, Sung-Ho;Rhee, Hyang-Joo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.193-204
    • /
    • 1996
  • Let U and V be nonempty compact subsets of two Hausdorff topological vector spaces. Suppose that a function $J : U \times V \to R$ is such that for each $\upsilon \in V, J(\cdot, \upsilon)$ is lower semi-continuous and convex on U, and for each $ u \in U, J(u, \cdot)$ is upper semi-continuous and concave on V.

  • PDF

SEMICLASSICAL ASYMPTOTICS OF INFINITELY MANY SOLUTIONS FOR THE INFINITE CASE OF A NONLINEAR SCHRÖDINGER EQUATION WITH CRITICAL FREQUENCY

  • Aguas-Barreno, Ariel;Cevallos-Chavez, Jordy;Mayorga-Zambrano, Juan;Medina-Espinosa, Leonardo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.241-263
    • /
    • 2022
  • We consider a nonlinear Schrödinger equation with critical frequency, (P𝜀) : 𝜀2∆v(x) - V(x)v(x) + |v(x)|p-1v(x) = 0, x ∈ ℝN, and v(x) → 0 as |x| → +∞, for the infinite case as described by Byeon and Wang. Critical means that 0 ≤ V ∈ C(ℝN) verifies Ƶ = {V = 0} ≠ ∅. Infinite means that Ƶ = {x0} and that, grossly speaking, the potential V decays at an exponential rate as x → x0. For the semiclassical limit, 𝜀 → 0, the infinite case has a characteristic limit problem, (Pinf) : ∆u(x)-P(x)u(x) + |u(x)|p-1u(x) = 0, x ∈ Ω, with u(x) = 0 as x ∈ Ω, where Ω ⊆ ℝN is a smooth bounded strictly star-shaped region related to the potential V. We prove the existence of an infinite number of solutions for both the original and the limit problem via a Ljusternik-Schnirelman scheme for even functionals. Fixed a topological level k we show that vk,𝜀, a solution of (P𝜀), subconverges, up to a scaling, to a corresponding solution of (Pinf ), and that vk,𝜀 exponentially decays out of Ω. Finally, uniform estimates on ∂Ω for scaled solutions of (P𝜀) are obtained.

DISTANCE TWO LABELING ON THE SQUARE OF A CYCLE

  • ZHANG, XIAOLING
    • Korean Journal of Mathematics
    • /
    • v.23 no.4
    • /
    • pp.607-618
    • /
    • 2015
  • An L(2; 1)-labeling of a graph G is a function f from the vertex set V (G) to the set of all non-negative integers such that ${\mid}f(u)-f(v){\mid}{\geq}2$ if d(u, v) = 1 and ${\mid}f(u)-f(v){\mid}{\geq}1$ if d(u, v) = 2. The ${\lambda}$-number of G, denoted ${\lambda}(G)$, is the smallest number k such that G admits an L(2, 1)-labeling with $k=\max\{f(u){\mid}u{\in}V(G)\}$. In this paper, we consider the square of a cycle and provide exact value for its ${\lambda}$-number. In addition, we also completely determine its edge span.

EXISTENCE OF BOUNDARY BLOW-UP SOLUTIONS FOR A CLASS OF QUASILINEAR ELLIPTIC SYSTEMS

  • Wu, Mingzhu;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1119-1132
    • /
    • 2009
  • In this paper, we consider the quasilinear elliptic system $\\div(|{\nabla}u|^{p-2}{\nabla}u)=u(a_1u^{m1}+b_1(x)u^m+{\delta}_1v^n),\;\\div(|{\nabla}_v|^{q-2}{\nabla}v)=v(a_2v^{r1}+b_2(x)v^r+{\delta}_2u^s)$, in $\Omega$ where m > $m_1$ > p-2, r > $r_1$ > q-, p, q $\geq$ 2, and ${\Omega}{\subset}R^N$ is a smooth bounded domain. By constructing certain super and subsolutions, we show the existence of positive blow-up solutions and give a global estimate.

  • PDF