• Title/Summary/Keyword: U.A.V

Search Result 1,745, Processing Time 0.036 seconds

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR IMPULSIVE DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Miao, Chunmei;Ge, Weigao;Zhang, Zhaojun
    • The Pure and Applied Mathematics
    • /
    • v.21 no.3
    • /
    • pp.147-163
    • /
    • 2014
  • In this paper, we study the existence of positive solutions for singular impulsive differential equations with integral boundary conditions $$\{u^{{\prime}{\prime}}(t)+q(t)f(t,u(t),u^{\prime}(t))=0,\;t{\in}\mathbb{J}^{\prime},\\{\Delta}u(t_k)=I_k(u(t_k),u^{\prime}(t_k)),\;k=1,2,{\cdots},p,\\{\Delta}u^{\prime}(t_k)=-L_k(u(t_k),u^{\prime}(t_k)),\;k=1,2,{\cdots},p,\\u=(0)={\int}_{0}^{1}g(t)u(t)dt,\;u^{\prime}=0,$$) where the nonlinearity f(t, u, v) may be singular at v = 0. The proof is based on the theory of Leray-Schauder degree, together with a truncation technique. Some recent results in the literature are generalized and improved.

SOME PROPERTIES ON f-EDGE COVERED CRITICAL GRAPHS

  • Wang, Jihui;Hou, Jianfeng;Liu, Guizhen
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.357-366
    • /
    • 2007
  • Let G(V, E) be a simple graph, and let f be an integer function on V with $1{\leq}f(v){\leq}d(v)$ to each vertex $v{\in}V$. An f-edge cover-coloring of a graph G is a coloring of edge set E such that each color appears at each vertex $v{\in}V$ at least f(v) times. The f-edge cover chromatic index of G, denoted by ${\chi}'_{fc}(G)$, is the maximum number of colors such that an f-edge cover-coloring of G exists. Any simple graph G has an f-edge cover chromatic index equal to ${\delta}_f\;or\;{\delta}_f-1,\;where\;{\delta}_f{=}^{min}_{v{\in}V}\{\lfloor\frac{d(v)}{f(v)}\rfloor\}$. Let G be a connected and not complete graph with ${\chi}'_{fc}(G)={\delta}_f-1$, if for each $u,\;v{\in}V\;and\;e=uv{\nin}E$, we have ${\chi}'_{fc}(G+e)>{\chi}'_{fc}(G)$, then G is called an f-edge covered critical graph. In this paper, some properties on f-edge covered critical graph are discussed. It is proved that if G is an f-edge covered critical graph, then for each $u,\;v{\in}V\;and\;e=uv{\nin}E$ there exists $w{\in}\{u,v\}\;with\;d(w)\leq{\delta}_f(f(w)+1)-2$ such that w is adjacent to at least $d(w)-{\delta}_f+1$ vertices which are all ${\delta}_f-vertex$ in G.

V-SUPER VERTEX OUT-MAGIC TOTAL LABELINGS OF DIGRAPHS

  • Devi, Guruvaiah Durga;Durga, Morekondan Subhash Raja;Marimuthu, Gurusamy Thevar
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.435-445
    • /
    • 2017
  • Let D be a directed graph with p vertices and q arcs. A vertex out-magic total labeling is a bijection f from $V(D){\cup}A(D){\rightarrow}\{1,2,{\ldots},p+q\}$ with the property that for every $v{\in}V(D)$, $f(v)+\sum_{u{\in}O(v)}f((v,u))=k$, for some constant k. Such a labeling is called a V-super vertex out-magic total labeling (V-SVOMT labeling) if $f(V(D))=\{1,2,3,{\ldots},p\}$. A digraph D is called a V-super vertex out-magic total digraph (V-SVOMT digraph) if D admits a V-SVOMT labeling. In this paper, we provide a method to find the most vital nodes in a network by introducing the above labeling and we study the basic properties of such labelings for digraphs. In particular, we completely solve the problem of finding V-SVOMT labeling of generalized de Bruijn digraphs which are used in the interconnection network topologies.

MAX-MIN CONTROLLABILITY OF DELAY-DIFFERENTIAL GAMES IN HILBERT SPACES

  • Kang, Yong-Han;Jeong, Jin-Mun;Park, Jong-Yeoul
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.177-191
    • /
    • 2001
  • We consider a linear differential game described by the delay-differential equation in a Hilbert space H; (※Equations, See Full-text) U and V are Hilbert spaces, and B(t) and C(t) are families of bounded operators on U and V to H, respectively. A(sub)0 generates an analytic semigroup T(t) = e(sup)tA(sub)0 in H. The control variables g, and u and v are supposed to be restricted in the norm bounded sets (※Equations, See Full-text). For given x(sup)0 ∈ H and a given time t > 0, we study $\xi$-approximate controllability to determine x($.$) for a given g and v($.$) such that the corresponding solution x(t) satisfies ∥x(t) - x(sup)0∥ $\leq$ $\xi$($\xi$ > 0 : a given error).

  • PDF

A Heuristic for Dual Mode Routing with Vehicle and Drone

  • Min, Yun-Hong;Chung, Yerim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.79-84
    • /
    • 2016
  • In this paper we consider the problem of finding the triplet (S,${\pi}$,f), where $S{\subseteq}V$, ${\pi}$ is a sequence of nodes in S and $f:V{\backslash}S{\rightarrow}S$ for a given complete graph G=(V,E). In particular, there exist two costs, $c^V_{uv}$ and $c^D_{uv}$ for $(u,v){\in}E$, and the cost of triplet (S,${\pi}$,f) is defined as $\sum_{i=1}^{{\mid}S{\mid}}c^V_{{\pi}(i){\pi}(i+1)}+2$ ${\sum_{u{\in}V{\backslash}S}c^D_{uf(u)}$. This problem is motivated by the integrated routing of the vehicle and drone for urban delivery services. Since a well-known NP-complete TSP (Traveling Salesman Problem) is a special case of our problem, we cannot expect to have any polynomial-time algorithm unless P=NP. Furthermore, for practical purposes, we may not rely on time-exhaustive enumeration method such as branch-and-bound and branch-and-cut. This paper suggests the simple heuristic which is motivated by the MST (minimum spanning tree)-based approximation algorithm and neighborhood search heuristic for TSP.

A CONJUGACY THEOREM IN PROFINITE GROUPS

  • Shin, Hyun-Yong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.139-144
    • /
    • 1995
  • Two subgroups U and V of a finite group G are called to be p-conjugate for a prime p if a Sylow p-subgroup of U is conjugate to a Sylow p-subgroup of V. This concept of p-conjugacy also makes sense for some infinite groups with a reasonable Sylow theory.

  • PDF

WHEN IS C(X) AN EM-RING?

  • Abuosba, Emad;Atassi, Isaaf
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.17-29
    • /
    • 2022
  • A commutative ring with unity R is called an EM-ring if for any finitely generated ideal I there exist a in R and a finitely generated ideal J with Ann(J) = 0 and I = aJ. In this article it is proved that C(X) is an EM-ring if and only if for each U ∈ Coz (X), and each g ∈ C* (U) there is V ∈ Coz (X) such that U ⊆ V, ${\bar{V}}=X$, and g is continuously extendable on V. Such a space is called an EM-space. It is shown that EM-spaces include a large class of spaces as F-spaces and cozero complemented spaces. It is proved among other results that X is an EM-space if and only if the Stone-Čech compactification of X is.

A SUFFICIENT CONDITION FOR THE UNIQUENESS OF POSITIVE STEADY STATE TO A REACTION DIFFUSION SYSTEM

  • Kang, Joon-Hyuk;Oh, Yun-Myung
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.377-385
    • /
    • 2002
  • In this paper, we concentrate on the uniquencess of the positive solution for the general elliptic system $\Delta$u+u($g_1$(u)-$g_2$(v))=0 $\Delta$u+u($h_1$(u)-$h_2$(v))=0 in$R_{+}$ $\times$ $\Omega$, $u\mid\partial\Omega = u\mid\partial\Omega = 0$. This system is the general model for the steady state of a competitive interacting system. The techniques used in this paper are upper-lower solutions, maximum principles and spectrum estimates. The arguments also rely on some detailed properties for the solution of logistic equations.

Derivations with Power Values on Lie Ideals in Rings and Banach Algebras

  • Rehman, Nadeem ur;Muthana, Najat Mohammed;Raza, Mohd Arif
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.397-408
    • /
    • 2016
  • Let R be a 2-torsion free prime ring with center Z, U be the Utumi quotient ring, Q be the Martindale quotient ring of R, d be a derivation of R and L be a Lie ideal of R. If $d(uv)^n=d(u)^md(v)^l$ or $d(uv)^n=d(v)^ld(u)^m$ for all $u,v{\in}L$, where m, n, l are xed positive integers, then $L{\subseteq}Z$. We also examine the case when R is a semiprime ring. Finally, as an application we apply our result to the continuous derivations on non-commutative Banach algebras. This result simultaneously generalizes a number of results in the literature.

ON THE SOLUTION OF A MULTI-VARIABLE BI-ADDITIVE FUNCTIONAL EQUATION I

  • Park, Won-Gil;Bae, Jae-Hyeong
    • The Pure and Applied Mathematics
    • /
    • v.13 no.4 s.34
    • /
    • pp.295-301
    • /
    • 2006
  • We Investigate the relation between the multi-variable bi-additive functional equation f(x+y+z,u+v+w)=f(x,u)+f(x,v)+f(x,w)+f(y,u)+f(y,v)+f(y,w)+f(z,u)+f(z,v)+f(z,w) and the multi-variable quadratic functional equation g(x+y+z)+g(x-y+z)+g(x+y-z)+g(-x+y+z)=4g(x)+4g(y)+4g(z). Furthermore, we find out the general solution of the above two functional equations.

  • PDF