
KYUNGPOOK Math. J. 56(2016), 397-408

http://dx.doi.org/10.5666/KMJ.2016.56.2.397

pISSN 1225-6951 eISSN 0454-8124

c⃝ Kyungpook Mathematical Journal

Derivations with Power Values on Lie Ideals in Rings and
Banach Algebras

Nadeem ur Rehman
Department of Mathematics, Faculty of Science, Taibah University, Al-Madinah,
KSA
E-mail : rehman100@gmail.com

Najat Mohammed Muthana
Department of Mathematics, Science Faculty for Girls, King Abdulaziz University,
KSA
E-mail : najat_muthana@hotmail.com

Mohd Arif Raza∗

Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India
E-mail : arifraza03@gmail.com

Abstract. Let R be a 2-torsion free prime ring with center Z, U be the Utumi quotient

ring, Q be the Martindale quotient ring of R, d be a derivation of R and L be a Lie ideal

of R. If d(uv)n = d(u)md(v)l or d(uv)n = d(v)ld(u)m for all u, v ∈ L, where m,n, l are

fixed positive integers, then L ⊆ Z. We also examine the case when R is a semiprime

ring. Finally, as an application we apply our result to the continuous derivations on non-

commutative Banach algebras. This result simultaneously generalizes a number of results

in the literature.

1. Introduction

In all that follows, unless specifically stated otherwise, R is a (semi) prime ring,
Z is the center of R, Q is the Martindale quotient ring and U is the Utumi quotient
ring of R. The center of U , denoted by C, is called the extended centroid of R (we
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refer the reader to [2], for the definitions and related properties of these objects).
For any x, y ∈ R, the symbol [x, y] stands for the commutator xy − yx. A ring R
is called 2-torsion free, if whenever 2x = 0 with x ∈ R, then x = 0. An additive
subgroup L of R is said to be a Lie ideal if [l, r] ∈ L for all l ∈ L and r ∈ R. A Lie
ideal L is said to be non-commutative if [L,L] ̸= 0. Let L be a non-commutative
Lie ideal of R. It is well known that [R[L,L]R,R] ⊆ L (see the proof of [9, Lemma
1.3]). Since [L,L] ̸= 0, we have 0 ̸= [I,R] ⊆ L, for I = R[L,L]R a nonzero ideal
of L. Recall that a ring R is prime if xRy = {0} implies either x = 0 or y = 0,
and R is semiprime if xRx = {0} implies x = 0. An additive mapping d : R → R
is called a derivation if d(xy) = d(x)y + yd(x) holds for all x, y ∈ R. In particular
d is an inner derivation induced by an element q ∈ R, if d(x) = [q, x] holds for all
x ∈ R. For any nonempty subset S of R. If d(xy) = d(x)d(y) or d(xy) = d(y)d(x)
for all x, y ∈ S, then d is called a derivation which acts as a homomorphism or
an anti-homomorphism on S, respectively. A derivation d of R can be extended
uniquely to a derivation on Q (see [2, Proposition 2.5.1]) which will be also denoted
by d. A derivation d is said to be Q-inner if there exists q ∈ Q such that d = ad(q),
i.e., d(x) = ad(q)(x) = [q, x] for all x ∈ R, otherwise d is Q-outer. Moreover, we
remark that the main theory of differential identities initiated by Kharchenko [13].

Let us introduce the background of our investigation. Many results in litera-
ture indicate that global structure of a prime ring R is often tightly connected to
the behaviour of additive mappings defined on R. A well-known result proved by
Herstein [10], stated that if d is a nonzero derivation of a prime ring R such that
d(x)n ∈ Z for all x ∈ R, then R satisfies s4, the standard identity in four vari-
ables. The Herstein’s result was extended to the case of Lie ideals of prime rings
by Bergen and Carini [4] and they obtained the same conclussion by proving that
if R is a prime ring of characteristic not 2 and d is a nonzero derivation of R such
that d(u)n ∈ Z for all u in some noncentral Lie ideal of R. The number of authors
extended this theorem in several ways.

In 1989, Bell and Kappe [3, Theorem 3] proved that if d is a derivation of a
prime ring R such that d(xy) = d(x)d(y) or d(xy) = d(y)d(x) for all x, y ∈ I, a
nonzero right ideal of R, then d = 0 on R. Further Ali et al. [1] extend this result
to Lie ideal of a 2-torsion free prime rings. More precisely they prove that if L is a
noncentral Lie ideal of R such that u2 ∈ L for all u ∈ L and d(xy) = d(x)d(y) or
d(xy) = d(y)d(x) for all x, y ∈ L, then either d = 0 or L ⊂ Z. In 2007, Wang and
You [25] eliminate the hypothesis u2 ∈ L for all u ∈ L and proved the same result
as Ali et al. [1]. To be more specific, the statement of Wang and You theorem is
the following.

Theorem 1.1 Let R be a 2-torsion free prime ring and L be a nonzero Lie ideal of
R. If d is a derivation of R such that d(xy) = d(x)d(y) or d(xy) = d(y)d(x) for all
x, y ∈ L, then either d = 0 or L ⊆ Z.

The present paper is motivated by the above mention results and here our aim
is to generalize all the above results by studying the following theorem:
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Theorem 1.2 Let R be a 2-torsion free prime ring with center Z, d be a nonzero
derivation of R and L be a Lie ideal of R. If d(uv)n = d(u)md(v)l (or d(uv)n =
d(v)ld(u)m) for all u, v ∈ L, where m,n, l are fixed positive integers, then L ⊆ Z.

Theorem 1.3 Let R be a 2-torsion free semiprime ring and d be a nonzero deriva-
tion of R. If d(rs)n = d(r)md(s)l (or d(rs)n = d(s)ld(r)m) for all r, s ∈ R, where
m,n, l are fixed positive integers, then there exists a central idempotent element e
of U such that on the direct sum decomposition U = eU ⊕ (1 − e)U , d vanishes
identically on eU and the ring (1− e)U is commutative.

In the last section of this paper we will consider A as a Banach algebra with
Jacobson radical rad(A). The classical result of Singer and Wermer [23] stated that
any continuous derivation on a commutative Banach algebra has the range in the
Jacobson radical of the algebra. Singer and Wermer also formulated the conjecture
that the continuity assumption can be removed. In 1988, Thomas [24] verified
this conjecture. It is clear that the same result of Singer-Wermer does not hold in
non-commutative Banach algebras (because of inner derivations).

However, this situation raises a very interesting question as how to obtain the
non-commutative version of Singer-Wermer theorem. A first answer to this problem
was obtained by Sinclair [22] and he proved that every continuous derivation of a
Banach algebra leaves primitive ideals of the algebra invariant. Since then many
authors obtained more information about derivations satisfying certain suitable con-
ditions in Banach algebras. In [18], Mathieu and Murphy proved that if d is a con-
tinuous derivation on an arbitrary Banach algebra such that [d(x), x] ∈ Z(A) for all
x ∈ A, then d maps into the radical. Later in [19], Mathieu and Runde removed the
continuity assumption using the classical result of Posner’s on centralizing deriva-
tions of prime rings [21] and Thomas’s theorem [24] in which they showed that if d
is a derivation which satisfies [d(x), x] ∈ Z(A) for all x ∈ A, then d has its range in
the radical of the algebra. More recently Park [20] proved that if d is a derivation
of a non-commutative Banach algebra A such that [[d(x), x], d(x)] ∈ rad(A) for all
x ∈ A, then d maps into rad(A). In [7], De Filippis extended the Park’s result to the
generalized derivation. Here we will continue the investigation about the relation-
ship between the structure of an algebra A and the behaviour of derivations defined
on A. After that we apply our first result on prime rings to the study of analogous
conditions for continuous derivations on non-commutative Banach algebras.

More precisely, we will prove the following.

Theorem 1.4 Let A be a non-commutative Banach algebra with Jacobson radical
rad(A) and m,n, l be the fixed positive integers. Suppose that there exist a contin-
uous derivation d : A → A such that d(rs)n − d(r)md(s)l(or d(rs)n − d(s)ld(r)m) ∈
rad(A) for all r, s ∈ A, then d maps into the radical of A.

2. The Results in Prime Rings

For the proof of main results, we need the following facts, which might be of
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some independent interest.

Fact 2.1 ([5]) If I is a two-sided ideal of R, then R, I and U satisfy the same
generalized polynomial identities with coefficients in U .

Fact 2.2 ([2, Proposition 2.5.1]) Every derivation d of R can be uniquely extended
to a derivation of U .

Fact 2.3 ([15]) If I is a two-sided ideal of R, then R, I and U satisfy the same
differential identities.

For a complete and detailed description of the theory of generalized polynomial
identities involving derivations, we refer the reader to [2, Chapter 7 ].

We denote by Der(U) the set of all derivations on U . By a derivation word we
mean an additive map ∆ of the form ∆ = d1d2 . . . dm with each di ∈ Der(U). Then
a differential polynomial is a generalized polynomial with coefficients in U of the
form Φ(∆jxi) involving non-commutative indeterminates xi on which the derivation
words ∆j act as unary operations. The differential polynomial Φ(∆jxi) is said to
be a differential identity on a subset T of U if it vanishes for any assignment of
values from T to its indeterminates xi.

Let Dint be the C-subspace of Der(U) consisting of all inner derivations on U
and let d be a nonzero derivation on R. By [13, Theorem 2], we have the following
result (see also [15, Theorem 1]):

If Φ(x1, . . . , xn,
dx1, . . . ,

dxn) is a differential identity on R, then one of the
following assertions holds:

(i) either d ∈ Dint;

(ii) or, R satisfies the generalized polynomial identity Φ(x1, · · · , xn, y1, · · · , yn).

Now, we are in a position to prove the main result of this section.

Theorem 1.2 Let R be a 2-torsion free prime ring with center Z, d be a nonzero
derivation of R and L be a Lie ideal of R. If d(uv)n = d(u)md(v)l (or d(uv)n =
d(v)ld(u)m) for all u, v ∈ L, where m,n, l are fixed positive integers, then L ⊆ Z.

Proof. Assume on contrary that L " Z. Since R is a prime ring and char(R) ̸= 2,
it follows from a result of Herstien [9, p. 4-5], there exists a nonzero two-sided ideal
I of R such that 0 ̸= [I,R] ⊆ L. In particular, [I, I] ⊆ L. By the given hypothesis
we divide the proof into two cases:

Case 1. When d satisfy d(uv)n = d(u)md(v)l for all u, v ∈ L, then by the same
argument presented above, we have

d([x, y][z, w])n = d([x, y])md([z, w])l for all x, y, z, w ∈ I.
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Thus, for all x, y, z, w ∈ I, I satisfies the differential identity(
([d(x), y] + [x, d(y)])[z, w] + [x, y]([d(z), w] + [z, d(w)])

)n
(2.1)

= ([d(x), y] + [x, d(y)])m([d(z), w] + [z, d(w)])l.

In the light of Kharchenko’s theory [13], we split the proof into two steps:

Step 1. If the derivation d is Q-outer, then by Kharchenko’s theorem [13], I
satisfies the polynomial identity(

([s, y] + [x, t])[z, w] + [x, y]([s1, w] + [z, t1])
)n

= ([s, y] + [x, t])m([s1, w] + [z, t1])
l for all x, y, z, w, s, t, s1, t1 ∈ I.

In particular, for y = s1 = t1 = 0, I satisfies the blended component
([x, t][z, w])n = 0 for all x, t, z, w ∈ I. By Chuang [5, Theorem 2], this polyno-
mial identity is also satisfied by Q and hence R does as well. Note that this is a
polynomial identity and hence there exist a field F such that R ⊆ Mk(F), the ring of
k×k matrices over a field F, where k ≥ 1. Moreover, R and Mk(F) satisfy the same
polynomial identity [14, Lemma 1], i.e., ([x, t][z, w])n = 0 for all x, t, z, w ∈ Mk(F).
Let eij the usual matrix unit with 1 in (i, j)-entry and zero elsewhere. By choosing
x = e11, t = e12, z = e21, and w = e22, we see that

([x, t][z, w])n = (−1)ne11 ̸= 0, a contradiction.

Step 2. We now assume that d be an inner derivation induced by an element
q ∈ Q, i.e, d(x) = [q, x] for all x ∈ R. Then, for any x, y, z, w ∈ I, we have(

([[q, x], y] + [x, [q, y]])[z, w] + [x, y]([[q, z], w] + [z, [q, w]])
)n

= ([[q, x], y] + [x, [q, y]])m([[q, z], w] + [z, [q, w]])l.

By Chuang [5, Theorem 2], I and Q satisfy same generalized polynomial identities
(GPIs), we have(

([[q, x], y] + [x, [q, y]])[z, w] + [x, y]([[q, z], w] + [z, [q, w]])
)n

= ([[q, x], y] + [x, [q, y]])m([[q, z], w] + [z, [q, w]])l,

for all x, y, z, w ∈ I.

Let

ϕ(x, y) =
(
([[q, x], y] + [x, [q, y]])[z, w] + [x, y]([[q, z], w] + [z, [q, w]])

)n
− ([[q, x], y] + [x, [q, y]])m([[q, z], w] + [z, [q, w]])l.

Since d ̸= 0, q /∈ C. Moreover, since L is noncentral, R must be non-
commutative. Hence ϕ(x, y) = 0 is a nontrivial generalized polynomial identity
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for Q. When the center C of Q is infinite, we have ϕ(x, y) = 0 for all x, y ∈ Q⊗C C,
where C is algebraic closure of C (see [16, Proposition]). Since both Q and Q⊗C C
are prime and centrally closed [8, Theorems 2.5 and 3.5], we may replace R by Q
or Q ⊗C C according as C is finite or infinite. Thus, we may assume that C = Z
and R is C-algebra centrally closed, which is either finite or algebraically closed and
that q ∈ R, q /∈ Z such that R satisfies the generalized polynomial identity(

([[q, x], y] + [x, [q, y]])[z, w] + [x, y]([[q, z], w] + [z, [q, w]])
)n

= ([[q, x], y] + [x, [q, y]])m([[q, z], w] + [z, [q, w]])l.

By Martindale’s theorem [17], R is a primitive ring having nonzero socle H and the
commuting division ring D, which is a finite dimensional central division algebra
over Z. Since Z is either finite or algebraically closed, D must coincide with Z.
Hence by Jacobson’s theorem [11, p. 75], R is isomorphic to a dense ring of linear
transformations of some vector space V over Z, i.e., R ∼= End(VZ). If V is a finite
dimensional over Z, then the density of R on V implies that R ∼= Mk(Z), where
k = dimZV.

Assume that dim(VZ) = 1, then R = Z so I ⊆ Z, a contradiction. Therefore
dim(VZ) ≥ 2. In this case, our aim is to show that, for any v ∈ V, v and qv are
linearly Z-dependent. If v = 0, then {v, qv} is linearly Z-dependent, so we assume
that v ̸= 0. On contrary suppose that v and qv are linearly Z-independent. By the
density of R in End(VZ) there exists elements x0, y0, z0, w0 ∈ R such that

x0v = 0, x0qv = qv, y0v = 0, y0qv = v;
z0v = 0, z0qv = v, w0v = 0, w0qv = qv.

With all these, we obtain from the assumption that

0 =
(
([[q, x0], y0] + [x0, [q, y0]])[z0, w0] + [x0, y0]([[q, z0], w0] + [z0, [q, w0]])

)n
= ([[q, x0], y0] + [x0, [q, y0]])

m([[q, z0], w0] + [z0, [q, w0]])
l

= (−1)lv, a contradiction.

Thus we conclude that {v, qv} is a linearly Z-dependent for any v ∈ V. From
above we have prove that qv = vµ(v) for all v ∈ V , where µ(v) ∈ Z depends on
v ∈ V . We claim that µ(v) is independent of the choice of v ∈ V . Indeed for
any v, w ∈ V , if v and w are Z-independent, by the above situation, there exist
µ(v), µ(w), µ(v + w) ∈ Z such that

qv = vµ(v), qw = wµ(w), and q(v + w) = (v + w)µ(v + w),

which gives, vµ(v) + wµ(w) = q(v + w) = (v + w)µ(v + w).

Therefore

v(µ(v)− µ(v + w)) + w(µ(w)− µ(v + w)) = 0.
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Since v and w are Z-independent, we have µ(x) = µ(v+w) = µ(w). If v and w
are Z-dependent, say v = wβ, where β ∈ Z, then vµ(v) = qv = qwβ = wµ(w)β =
vµ(w) and so µ(v) = µ(w) as claimed, i.e., µ(v) is independent of the choice of
v ∈ V. So, there exist γ ∈ Z such that qv = vγ, for all v ∈ V . Therefore q ∈ Z and
d = 0, a contradiction. This completes the proof.

Case 2. Assume that d satisfy d(uv)n = d(v)ld(u)m for all u, v ∈ L. By hypothesis,
we can see that

d([x, y][z, w])n = d([z, w])ld([x, y])m for all x, y, z, w ∈ I.

Equivalently we have(
([d(x), y] + [x, d(y)])[z, w] + [x, y]([d(z), w] + [z, d(w)])

)n
(2.2)

= ([d(z), w] + [z, d(w)])l([d(x), y] + [x, d(y)])m.

This condition is a differential identity satisfied by I. By using Kharchenko’s
theorem [13], either d = ad(q) is the inner derivation induced by an element q ∈ Q
or I satisfies the polynomial identity for all x, y, z, w, s, t, s1, t1 ∈ I(

([s, y] + [x, t])[z, w] + [x, y]([s1, w] + [z, t1])
)n

= ([s1, w] + [z, t1])
l([s, y] + [x, t])m.

In the latter case set z = t = s = 0 to obtain the identity [x, y][s1, w] = 0 for
all x, y, s1, w ∈ I. Thus we can get a contradiction by using the similar technique
as presented in Case 1. Assume now that for q ∈ Q such that d = ad(q), i.e.,
d(x) = ad(q)(x) = [q, x] for all x ∈ R. By [5, Theorem 2], I and Q satisfies the
same generalized polynomial identities and hence by (2.2) we have(

([[q, x], y] + [x, [q, y]])[z, w] + [x, y]([[q, z], w] + [z, [q, w]])
)n

= ([[q, z], w] + [z, [q, w]])l([[q, x], y] + [x, [q, y]])m

for allx, y, z, w ∈ Q.

In view of the above situation in Case 1, we assume that R is centrally closed
over Z which is either finite or algebraically closed and that q ∈ R, q /∈ Z such that
R satisfies the nontrivial generalized polynomial identity(

([[q, x], y] + [x, [q, y]])[z, w] + [x, y]([[q, z], w] + [z, [q, w]])
)n

= ([[q, z], w] + [z, [q, w]])l([[q, x], y] + [x, [q, y]])m.

Moreover, we know that R is isomorphic to a dense subring of End(VZ) for some
vector space V over Z. For any v ∈ V, we claim that v and qv are Z-dependent.
Suppose to the contrary that v and qv are Z-independent, then by the density of
R in End(VZ) there exist elements x0, y0, z0, w0 ∈ R such that

x0v = 0, x0qv = qv, y0v = 0, y0qv = v;
z0v = 0, z0qv = v, w0v = 0, w0qv = qv.
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One can see that

0 =
(
([[q, x0], y0] + [x0, [q, y0]])[z0, w0] + [x0, y0]([[q, z0], w0] + [z0, [q, w0]])

)n
= ([[q, z0], w0] + [z0, [q, w0]])

l([[q, x0], y0] + [x0, [q, y0]])
m

= (−1)mv, a contradiction.

Thus, v and qv are Z-dependent as claimed. In view of Case 1, we know that
q ∈ Z and so d = 0, a contradiction. This completes the proof. 2

We immediately get the following corollary from the above theorem:

Corollary 2.1 Let R be a 2-torsion free prime ring and d be a nonzero derivation
of R. If d(rs)n = d(r)md(s)l (or d(rs)n = d(s)ld(r)m) for all r, s ∈ R, where m,n, l
are fixed positive integers, then R is commutative.

The following example demonstrates that R to be prime is essential in the
hypothesis.

Example 2.1 Let S be any ring.

(i) Let R =

{(
a b
0 0

)
: a, b ∈ S

}
and L =

{(
0 a
0 0

)
: a ∈ S

}
. We define

a map d : R → R by d(x) = e11x − xe11. Then it is easy to see that
d is a nonzero derivation and L is a Lie ideal of R such that for all fixed
positive integers m,n, l, d satisfies the properties, d(uv)n = d(u)md(v)l and
d(uv)n = d(v)ld(u)m for u, v ∈ L, however L * Z.

(ii) Let R =

{(
a b
0 c

)
: a, b, c ∈ S

}
and L =

{(
0 a
0 0

)
: a ∈ S

}
. Define a map

d : R→ R by d(x) = [x, e11 + e12]. Then R is a ring under usual operations.
It is easy to see that d is a nonzero derivation and L is a Lie ideal of R which
satisfies the properties, d(uv)n = d(u)md(v)l and d(uv)n = d(v)ld(u)m for
u, v ∈ L, where m,n, l are fixed positive integers, but L * Z.

3. The Results in Semiprime Rings

From now on, R is the semiprime ring and U is the left Utumi quotient ring of
R. In order to prove the main result of this section we will make use of the following
facts:

Fact 3.1 ([2, Proposition 2.5.1]) Any derivation of a semiprime ring R can be
uniquely extended to a derivation of its left Utumi quotient ring U and so any
derivation of R can be defined on the whole U .

Fact 3.2 ([6, p. 38]) If R is semiprime then so is its left Utumi quotient ring. The
extended centroid C of a semiprime ring coincides with the center of its left Utumi
quotient ring.
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Fact 3.3 ([6, p. 42]) Let B be the set of all the idempotents in C, the extended
centroid of R. Suppose that R is an orthogonally complete B-algebra. For any
maximal ideal P of B, PR forms a minimal prime ideal of R, which is invariant
under any nonzero derivation of R.

Now, we prove the following.

Theorem 1.3. Let R be a 2-torsion free semiprime ring and d be a nonzero deriva-
tion of R. If d(rs)n = d(r)md(s)l for all r, s ∈ R, where m,n, l are fixed positive
integers, then there exists a central idempotent element e of U such that on the
direct sum decomposition U = eU ⊕ (1− e)U , d vanishes identically on eU and the
ring (1− e)U is commutative.

Proof. Since R is semiprime and we have given that d(rs)n = d(r)md(s)l for all
r, s ∈ I. By Fact , Z(U) = C, the extended centroid of R, and by Fact , derivation
d can be uniquely extended on U . In view of Lee [15], R and U satisfy the same
differential identities, hence d(rs)n = d(r)md(s)l for all r, s ∈ U .

Let B be the complete Boolean algebra of idempotents in C and M be any
maximal ideal of B. Since U is a B-algebra which is orthogonally complete (see
Chuang [6, p. 42], and Fact ), by Fact , MU is a prime ideal of U , which is d-
invariant. Denote U = U/MU and d the derivation induced by d on U , i.e., d(u) =
d(u) for all u ∈ U . Therefore d has in U the same property as d on U , i.e., for all
r, s ∈ U , d(rs)n = d(r)md(s)l. It is obvious that U is prime. Therefore, by Corollary
, either U is commutative or d = 0. This implies that, for any maximal ideal M of
B, either d(U) ⊆ MU or [U,U ] ⊆ MU . In any case d(U)[U,U ] ⊆ MU for all M ,
where MU runs over all prime ideals of U . Therefore d(U)[U,U ] ⊆

∩
M MU = 0,

we obtain d(U)[U,U ] = 0.

By using the theory of orthogonal completion for semiprime rings [2, Chapter
3], it is clear that there exists a central idempotent element e in U such that on the
direct sum decomposition U = eU ⊕ (1− e)U , d vanishes identically on eU and the
ring (1− e)U is commutative. This completes the proof of the theorem. 2

Using arguments similar to those used in the proof of the Theorem , we may
conclude with the following (we omit the proof brevity). We can prove

Theorem 3.1 Let R be a 2-torsion free semiprime ring and d be a nonzero deriva-
tion of R. If d(rs)n = d(s)ld(r)m for all r, s ∈ R, where m,n, l are fixed positive
integers, then there exists a central idempotent element e of U such that on the
direct sum decomposition U = eU ⊕ (1− e)U , d vanishes identically on eU and the
ring (1− e)U is commutative.

4. Applications on Banach Algebras

In this section we obtain some results on non-commutative Banach algebras
by using the preceding algebraic results. Here A will denote a complex Banach
algebra. Let us state some well known and elementary definitions for the sake of
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completeness. By Banach algebra we shall mean a complex normed algebra A whose
underlying vector space is a Banach space. The Jacobson radical rad(A) of A is
the intersection of all primitive ideals. If the Jacobson radical reduces to the zero
element, A is called semisimple. In fact any Banach algebra A without a unity can
be embedded into a unital Banach algebra AI = A⊕ C as an ideal of codimension
one. In particular we may identify A with the ideal

{
(x, 0) : x ∈ A

}
in AI via the

isometric isomorphism x 7→ (x, 0).

In this section, we apply the purely algebraic results which is derived in section
2 and obtain the conditions that every continuous derivation on a Banach algebra
maps into the radical. The proofs of the results rely on a Sinclair’s theorem [22]
which stated that every continuous derivation d of a Banach algebra A leaves the
primitive ideals of A invariant. As we have mentioned before, Thomas [24] has
generalized the Singer-Wermer theorem by proving that any derivation on a com-
mutative Banach algebra maps the algebra into its radical, this result leads to the
question whether the theorem can be proven without any commutativity assump-
tion. On this manuscript there are many papers [17, 18, 22, 23] which shows that
the theorem holds without any commutativity assumption. We also acquire that
every derivation maps into its radical with some property without any commuta-
tivity assumption. Our first result in this section is about continuous derivations
on Banach algebras:

Theorem 1.4. Let A be a non-commutative Banach algebra with Jacobson radical
rad(A) and m,n, l be the fixed positive integers. Suppose that there exist a contin-
uous derivation d : A → A such that d(rs)n − d(r)md(s)l ∈ rad(A) for all r, s ∈ A,
then d maps into the radical of A.

Proof. We have given that d(rs)n − d(r)md(s)l ∈ rad(A) for all r, s ∈ A. Under the
assumption that d is nonzero continuous derivation with Jacobson radical rad(A).
In [22], Sinclair proved that any continuous derivation of a Banach algebra leaves
the primitive ideals invariant. Since the Jacobson radical rad(A) is the intersection
of all primitive ideals, we have d(rad(A)) ⊆ rad(A), which means that there is no
loss of generality in assuming that A is semisimple. Since d leaves all primitive ideals
invariant, one can introduce for any primitive ideal P ⊆ A, a nonzero derivation

dP : A/P → A/P

where A/P = A is a factor Banach algebra

dP (r + P ) = d(r) + P for all r ∈ A.

Note that every derivation on a semisimple Banach algebra is continuous [12,
Remark 4.3]. First, in case A/P is commutative, combining this result with the
Singer-Wermer theorem gives dP = 0 since A/P is semisimple. We intend to show
that dP = 0 in case when A/P is non-commutative. Since the assumption of the
theorem gives d(rs)n − d(r)md(s)l ∈ rad(A) for all r, s ∈ A/P . Thus by Corollary
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2.1, it is immediate that either A is commutative or dP = 0 on A/P . Consequently
d(A) ⊆ P for any primitive ideal P . Since the radical rad(A) of A is the intersection
of all primitive ideals in A, we get the required conclusion. 2

Using arguments similar to those used in the proof of the above theorem, we
can prove

Theorem 4.1 Let A be a non-commutative Banach algebra with Jacobson radical
rad(A) and m,n, l be the fixed positive integers. Suppose that there exist a contin-
uous derivation d : A → A such that d(rs)n − d(s)ld(r)m ∈ rad(A) for all r, s ∈ A,
then d maps into the radical of A.

In order to prove our last result, we will use the following well-known result
concerning semisimple Banach algebra contained [12].

Lemma 4.1 Every nonzero derivation on a semisimple Banach algebra is continu-
ous.

In view of the above Lemma 4.1, and Theorem 1.4, we may prove the following
theorem in the special case when A is a semisimple Banach algebra.

Corollary 4.1 Let A be a non-commutative semisimple Banach algebra with Ja-
cobson radical rad(A) and m,n, l be the fixed positive integers. Suppose that there
exist a continuous derivation d : A → A such that d(rs)n − d(r)md(s)l ∈ rad(A) for
all r, s ∈ A, then d(A) = 0.

Proof. By the hypothesis d is continuous. In view of the above Lemma 4.1, ev-
ery nonzero derivation on a semisimple Banach algebra is continuous. Thus every
nonzero derivation on a semisimple Banach algebra leaves the primitive ideals of
the algebra invariant. Now by using the same argument as used in the proof of the
Theorem and the fact that rad(A) = 0, as A is semisimple, we get the required
result. 2

We immediately get the following corollary from the above theorem.

Corollary 4.2 Let A be a non-commutative semisimple Banach algebra with Ja-
cobson radical rad(A) and m,n, l be the fixed positive integers. Suppose that there
exist a continuous derivation d : A → A such that d(rs)n = d(s)ld(r)m ∈ rad(A)
for all r, s ∈ A, then d(A) = 0.
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