• 제목/요약/키워드: 힌지 변위

검색결과 112건 처리시간 0.027초

Seismic Performance Evaluation of the Underground Utility Tunnel by Response Displacement Method and Response History Analysis (응답변위법과 응답이력해석법을 이용한 지중 공동구의 내진성능 평가)

  • Kwon, Ki-Yong;Lee, Jin-Sun;Kim, Yong-Kyu;Youn, Jun-Ung;Jeong, Soon-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • 제36권11호
    • /
    • pp.119-133
    • /
    • 2020
  • Underground utility tunnel, the most representative cut and cover structure, is subjected to seismic force by displacement of the surrounding soil. In 2020, Korea Infrastructure Safety Corporation has published "Seismic Performance Evaluation Guideline for Existing Utility Tunnel." This paper introduces two seismic evaluation methods, RDM (Response Displacement Method) and RHA (Response History Analysis) adopted in the guide and compares the methods for an example of an existing utility tunnel. The test tunnel had been constructed in 1988 and seismic design was not considered. RDM is performed by single and double cosine methods based on the velocity response spectrum at the base rock. RHA is performed by finite difference analysis that is able to consider nonlinear behavior of soil and structure together in two-dimensional plane strain condition. The utility tunnel shows elastic behavior for RDM, but shows plastic hinge for RHA under the collapse prevention level earthquake.

Failure Behavior of Hollow Circular RC Column According to the Spacing of Spirals (나선철근 간격에 따른 중공 원형 RC 기둥의 파괴거동)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제20권6호
    • /
    • pp.46-55
    • /
    • 2016
  • Three small scale hollow circular reinforced concrete columns(4.5 aspect ratio) were tested under cyclic lateral load with constant axial load. Diameter of section is 400 mm, hollow diameter is 200 mm. The selected test variable are transverse steel ratio. Volumetric ratio of spirals of all the columns is 0.302~0.604% in the plastic hinge region. It corresponds to 45.9~91.8% of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by seismic concept. The final objectives of this study are to provide quantitative reference data and tendency for performance or damage assessment based on the performance levels such as cracking, yielding, steel fracture, etc. In this paper, describes mainly failure behavior, strength degradation behaviour, displacement ductility of circular reinforced concrete bridge columns with respect to test variables.

Nonlinear Analysis of 3-D Steel Frames (3차원 강뼈대구조의 비선형 해석)

  • Kim, Seung Eock;Kim, Yo Suk;Choi, Se Hyu;Kim, Sung Mo;Choi, Joon Ho
    • Journal of Korean Society of Steel Construction
    • /
    • 제11권4호통권41호
    • /
    • pp.417-424
    • /
    • 1999
  • In this paper a nonlinear analysis of three-dimensional steel frames is developed. This analysis accounts for material and geometric nonlinearities. The material nonlinearity includes gradual yielding associated with flexural behaviors. The geometric nonlinearity includes the second-order effects associated with $P-{\delta}\;and\;P-{\Delta}$ effects. The material nonlinearity at the node is considered using the concept of P-M hinge consisting of many fibers. The geometric nonlinearity is considered by the use of stability function. The nonlinearity caused by shear and torsional interaction effects is neglected. The modified incremental displacement method is used as the solution technique. The load-displacements predicted by the proposed analysis compare well with those given by other approaches.

  • PDF

Nonlinear Analysis of FRP Strengthened Reinforced Concrete Columns by Force-Based Finite Element Model (하중기반 유한요소모델에 의한 FRP 보강 철근콘크리트 기둥의 비선형 해석)

  • Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • 제25권5호
    • /
    • pp.529-537
    • /
    • 2013
  • The aim of the current study is to develop a nonlinear isoparametric layered frame finite element (FE) analysis of FRP strengthened reinforced concrete (RC) beam or column members by a force-based FE formulation. In sections, concrete is modeled in the triaxial stress-strain relationship state and the FRP sheet is modeled as layered composite materials in two-dimension. The element stiffness matrix derived by the force-based FE has the force-interpolation functions without assuming the displacement shape functions. A lateral load test of RC column strengthened by GFRP sheets was analyzed by the developed force-based FE model. From comparative studies of the experimental and analysis results, it was shown to compare with the stiffness FE method that the force-based FE analysis could give more accurate predictions in the overall lateral load-deflection response as well as in nonlinear deformations and damages in the column plastic hinge region.

Quasi-Static Tests for Seismic Performance of Circular RC Bridge Piers (단일주 원형 철근콘크리트 교각의 내진거동에 관한 준정적 실험)

  • 정영수;이강균;한기훈;박종협
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제3권2호
    • /
    • pp.55-66
    • /
    • 1999
  • Eight RC bridge plers have been made on a 1/3.4 scale model and have been tested in a quasi-static cyclic load so as to investigate their seismic performance. The ultimate objective of this experimental study is to investigate the hysteretic behavior of reinforced concrete plers, which have been widely used for urban transportation facilities in Korea. Improtant test parameters are hoop ratio, axial load, load pattern, and etc. And noninear behaviors of test columns have been evaluated through their yield and ultimate strength, energy dissipation, ductility and load-deflection characteristics under quasi-static cyclic loads. From the quasi-static tests on 8 bridge piers, it is concluded that energy dissipation, ultimate strength and curvature for a given displacement factor ${\mu}={\Delta}/{\Delta}_y$ are higher for the seismically designed columns than for the nonseismically designed columns.

  • PDF

Seismic Performance of Octagonal Flared RC Columns using Oblong Hoops (장방형 띠철근을 이용한 팔각형 플레어 RC 기둥의 내진성능)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제19권6호
    • /
    • pp.1-9
    • /
    • 2015
  • Transverse steel bars are used in the plastic hinge zone of columns to insure adequate confinement, prevention of longitudinal bar buckling and ductile behavior. Fabrication and placement of rectangular hoops and cross-ties in columns are difficult to construct. Details of reinforcement for rectangular section require a lot of rectangular hoops and cross-ties. In this paper, to solve these problems, the new lateral confinement method using oblong hoop is proposed for the transverse confinement of the flared column. It can be the alternative for oblong cross-section and flared column with improved workability and cost-efficiency. The final objectives of this study are to suggest appropriate oblong hoop details and to provide quantitative reference data and tendency for seismic performance or damage assessment based on the drift levels such as residual deformation, elastic strain energy. This paper describes factors of seismic performance such as ultimate displacement/drift ratio, displacement ductility, response modification factor, equivalent viscous damping ratio and effective stiffness.

Evaluation of Member Plastic Deformation Demands for Dual Systems with Special Moment Frames (특수모멘트골조를 가진 이중골조시스템을 위한 부재소성변형 평가)

  • Eom, Tae-Sung;Kim, Jae-Yo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제14권5호
    • /
    • pp.41-51
    • /
    • 2010
  • For safe seismic evaluation and design, it is necessary to predict the plastic deformation demands of members. In the present study, a quick and reasonable method for the evaluation of member plastic deformations of dual systems was developed on the basis of results of elastic analysis, without using nonlinear analysis. Plastic deformations of beams, columns, and walls are functions of member stiffness, story drift ratio, and moment redistribution determined from elastic analysis. For dual systems with rigid connections between walls and beams, an increase in the plastic deformations of beams due to the rocking effect was considered. The proposed method was applied to 8-story dual systems and the predicted plastic deformations were compared with the results of nonlinear analysis. The results showed that the proposed method accurately predicted the member plastic deformations with simple calculations, but that for the accurate evaluation of member plastic deformations, the inelastic story drift ratio must also be predicted with accuracy. The proposed method can be applied to both the performance-based seismic design of new structures and the seismic evaluation of existing structures.

Development of a High speed Actuator for electric performance testing System of ceramic chips (세라믹칩 전기적 성능검사 시스템을 위한 고속구동 액튜에이터 개발)

  • Bae, Jin-Ho;Kim, Sung-Gaun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제12권4호
    • /
    • pp.1509-1514
    • /
    • 2011
  • The core of IT products, electronic components, especially the MLCC, chip inductors, chip Varistors and so on. In order to test the electrical characteristics of the chip using the Reno-pin contact test method has been used. In current chips, mass production of semiconductor manufacturing processes, high-speed production test for the chip speed up, precision is required. But Vibration displacement is a very short, so in order to overcome these shortcomings, the displacement amplification to design the structure has been actively studied. In this paper, a building structure with a flexible hinge was designed amplification instrument, semiconductor chip industry in the performance test and inspection equipment to measure the electrical characteristics of high speed linear actuators Reno-Pin using system was developed.

Dynamic Response of a Beam Including the Mass Effect of the Moving Loads (이동 하중의 질량효과를 고려한 보의 동적응답)

  • 최교준;김용철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제15권1호
    • /
    • pp.61-68
    • /
    • 1991
  • The system such as railway bridge can be modelled as the restrained beam with intermediate supports. This kind of structures are subject to the moving load, which has a great effect on dynamic stresses and can cause sever motions, especially at high velocities. Therefore, to analyze the dynamic characteristics of the system due to the moving load is very important. In this paper, the governing equation of motion of a restrained beam subjected to the moving load is derived by using the Hamilton's principle. The orthogonal polynomial functions, which are trial functions and satisfying the geometric and dynamic boundary conditions, are obtained through simple procedure. The dynamic response of the system subjected to the moving loads is obtained by using the Galerkin's method and the numerical time integration technique. The numerical tests for various constraint, velocity and boundary conditions were preformed. Furthermore, the effects of mass of the moving load are studied in detail.

Seismic Behavior of 3-Story Steel Frame Structures Subjected to Ground Motions (지진동을 받는 3층 강재 프레임 구조물의 지진 거동)

  • Hu, Jongwan;Cha, Youngwook
    • Journal of Korean Society of Steel Construction
    • /
    • 제28권6호
    • /
    • pp.383-394
    • /
    • 2016
  • This study is intended to predict the seismic behavior of the down-scaled 3-story steel frame structures subjected to the real ground motion, and evaluate their structural damage through advanced finite element (FE) analysis results. The FE frame models are designed by considering the effect of the soft story. In addition, the effect of structural asymmetry is also taken into consideration during the nonlinear dynamic analyses. After observing the analysis results, it is reconfirmed that the damage of the steel frame building under the ground motion should be governed by the soft story column rather than the structural mass asymmetry.