• Title/Summary/Keyword: 히트율

Search Result 115, Processing Time 0.044 seconds

Thermal Design of a MR16 LED Light with the Effects of Ceiling Unit Mount (실링 유닛 장착효과를 고려한 MR16 LED 조명등 방열설계)

  • Hwang, Soon-Ho;Lee, Young-Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3141-3147
    • /
    • 2010
  • The most important cause for shortening LED lighting efficiency and life is the junction temperature rises and, to solve this problem, various studies such as thermally efficient packaging, highly conductive material development, contact resistance improvement or heat sink optimization have been studied. However, most studies so far assumed that the LED lights are in the atmosphere, and thermal performance has not been therefore reported when the LED lights are mounted on the ceiling with ceiling unit. Thus, this study investigates the variation of junction temperature of the MR16 LED light under actual installation conditions and more accurate thermal design for the efficiency and life of LED lights is therefore achieved.

Capacity and Power Input Performance Curves Creation of Water-cooled VRF Heat Pump for EnergyPlus (EnergyPlus 해석용 수랭식 VRF 히트펌프의 냉·난방 능력 및 소비전력 예측식 산출 기법)

  • Kim, Min-Ji;Kwon, Hyuk-Joo;Lee, Kwang Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • Variable refrigerant flow (VRF) systems have recently attracted attention in many countries due to a variety of advantages over conventional system. Especially, the water-cooled VRF heat pump, including geothermal heat pump, is a system that accurately controls the flow rate of refrigerant for the improved efficiency under part load operation. This paper describe the process of generating the cooling and heating energy performance curve coefficients and performance expressions for modeling water cooled VRF system using EnergyPlus. Through this study, the process for generating performance curves can be implemented into EnergyPlus or other comparable building energy analysis tools for the long-term evaluation of heat pump under dynamic conditions.

Design and Implementation of an In-Memory File System Cache with Selective Compression (대용량 파일시스템을 위한 선택적 압축을 지원하는 인-메모리 캐시의 설계와 구현)

  • Choe, Hyeongwon;Seo, Euiseong
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.658-667
    • /
    • 2017
  • The demand for large-scale storage systems has continued to grow due to the emergence of multimedia, social-network, and big-data services. In order to improve the response time and reduce the load of such large-scale storage systems, DRAM-based in-memory cache systems are becoming popular. However, the high cost of DRAM severely restricts their capacity. While the method of compressing cache entries has been proposed to deal with the capacity limitation issue, compression and decompression, which are technically difficult to parallelize, induce significant processing overhead and in turn retard the response time. A selective compression scheme is proposed in this paper for in-memory file system caches that rapidly estimates the compression ratio of incoming cache entries with their Shannon entropies and compresses cache entries with low compression ratio. In addition, a description is provided of the design and implementation of an in-kernel in-memory file system cache with the proposed selective compression scheme. The evaluation showed that the proposed scheme reduced the execution time of benchmarks by approximately 18% in comparison to the conventional non-compressing in-memory cache scheme. It also provided a cache hit ratio similar to the all-compressing counterpart and reduced 7.5% of the execution time by reducing the compression overhead. In addition, it was shown that the selective compression scheme can reduce the CPU time used for compression by 28% compared to the case of the all-compressing scheme.

A Hashing Scheme using Round Robin in a Wireless Internet Proxy Server Cluster System (무선 인터넷 프록시 서버 클러스터 시스템에서 라운드 로빈을 이용한 해싱 기법)

  • Kwak, Huk-Eun;Chung, Kyu-Sik
    • The KIPS Transactions:PartA
    • /
    • v.13A no.7 s.104
    • /
    • pp.615-622
    • /
    • 2006
  • Caching in a Wireless Internet Proxy Server Cluster Environment has an effect that minimizes the time on the request and response of Internet traffic and Web user As a way to increase the hit ratio of cache, we can use a hash function to make the same request URLs to be assigned to the same cache server. The disadvantage of the hashing scheme is that client requests cannot be well-distributed to all cache servers so that the performance of the whole system can depend on only a few busy servers. In this paper, we propose an improved load balancing scheme using hashing and Round Robin scheme that distributes client requests evenly to cache servers. In the existing hashing scheme, if a hashing value for a request URL is calculated, the server number is statically fixed at compile time while in the proposed scheme it is dynamically fixed at run time using round robin method. We implemented the proposed scheme in a Wireless Internet Proxy Server Cluster Environment and performed experiments using 16 PCs. Experimental results show the even distribution of client requests and the 52% to 112% performance improvement compared to the existing hashing method.

A Performance Improvement of Linux TCP/IP Stack based on Flow-Level Parallelism in a Multi-Core System (멀티코어 시스템에서 흐름 수준 병렬처리에 기반한 리눅스 TCP/IP 스택의 성능 개선)

  • Kwon, Hui-Ung;Jung, Hyung-Jin;Kwak, Hu-Keun;Kim, Young-Jong;Chung, Kyu-Sik
    • The KIPS Transactions:PartA
    • /
    • v.16A no.2
    • /
    • pp.113-124
    • /
    • 2009
  • With increasing multicore system, much effort has been put on the performance improvement of its application. Because multicore system has multiple processing devices in one system, its processing power increases compared to the single core system. However in many cases the advantages of multicore can not be exploited fully because the existing software and hardware were designed to be suitable for single core. When the existing software runs on multicore, its performance improvement is limited by the bottleneck of sharing resources and the inefficient use of cache memory on multicore. Therefore, according as the number of core increases, it doesn't show performance improvement and shows performance drop in the worst case. In this paper we propose a method of performance improvement of multicore system by applying Flow-Level Parallelism to the existing TCP/IP network application and operating system. The proposed method sets up the execution environment so that each core unit operates independently as much as possible in network application, TCP/IP stack on operating system, device driver, and network interface. Moreover it distributes network traffics to each core unit through L2 switch. The proposed method allows to minimize the sharing of application data, data structure, socket, device driver, and network interface between each core. Also it allows to minimize the competition among cores to take resources and increase the hit ratio of cache. We implemented the proposed methods with 8 core system and performed experiment. Experimental results show that network access speed and bandwidth increase linearly according to the number of core.

Application Effect of Heating Energy Saving Package on Venlo Type Glasshouse of Paprika Cultivation (파프리카 재배 벤로형 유리온실에서 난방에너지 절감 패키지 기술 적용효과)

  • Kwon, Jin Kyung;Jeon, Jong Gil;Kim, Seung Hee;Kim, Hyung Gweon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.225-231
    • /
    • 2016
  • Glasshouse heating package technologies to improve energy usage efficiency in winter were developed. Heating package was composed of the ground water source heat pump with heating capacity of 105kW, the aluminum multi-layer thermal curtain with six layers of different materials and the root zone local heater with XL pipes of ${\phi}20mm$. Venlo type glasshouse($461m^2$) with the heating package was compared with the same type and area control glasshouse with the light oil boiler, the usual non-woven fabric thermal curtain with respect to the glasshouse inside temperature, relative humidity, crop growth, and heating energy consumption. The results of test in paprika cultivation glasshouses showed that the air temperature inside glasshouse with aluminum multi-layer thermal curtain was maintained $2.2^{\circ}C$ higher than that of control glasshouse in un-heating night time and the temperature in bed with root zone local heating was $4.7^{\circ}C$ higher than that in bed without local heating. Average heating coefficient of performance(COP) of the ground water source heat pump used in paprika cultivation was 3.7 and the glasshouse inside temperature was maintained at $21^{\circ}C$ of heating set up temperature. The heating energy consumptions per 10a were measured at 14,071L of light oil and 364kWh of electric power for the control glasshouse and 35,082kWh for the glasshouse applied heating package. As results, the heating cost of the glasshouse applied heating package was 87 percent lower than that of control glasshouse. The growths of paprika in glasshouses of control and applied heating package did not show any significant difference.

Performance Analysis of Multitone FH/MFSK System with Stage Address Coding in Subband and Nonsegmented Frequency Band (서브밴드 및 넌세그먼트 주파수대에서 어드레스 코딩을 사용한 FH / MFSK 시스템의 성능 분석)

  • Moon-Seung Lee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.5
    • /
    • pp.418-429
    • /
    • 1996
  • The number of bits per message and the number of tones in the frequency-hopping sequence are determined by the available bandwidth and the data rate of each user. These parameters in turn determine the tone duration which strongly influences the vulnerability of the system to transmission distortions. In this paper, an address code which is assigned to each individual user was employed in order to reduce the collisions or hit. Also the frequency band is divided into several subbands and each user transmits multitone frequency per subband per chip. And the new system which is to increase the duration of each tone by increasing the total number of system frequencies that has been proposed. It is found that an optimum value bit, tone, number of frequencies per chirp can improve the err performance. This flexibility slightly increases maximum efficiecy and makes the the system less vulnerable to multipath delay. So, It is found that as the nuber of user increased 50%, the efficiency as a tuncion of the bandwidth to user'rate ratio improve 20%.

  • PDF

Implementation of an Instruction Buffer to process Variable-Length Instructions (가변 길이 명령어 처리를 위한 명령어 버퍼 구현)

  • 박주현;김영민
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.12
    • /
    • pp.66-76
    • /
    • 1998
  • In this paper, we implement a buffer capable of handling short loops references to statistically lower the miss rate of variable-length instructions stored in the instruction buffer. MAU(Mark Appending Unit) takes the instructions as they are fetched from external memory, performs some initial decode operations and stores the results of the decode in the buffer for reducing multiple decodes when instructions are executed repeatedly such as in a loop. It includes a decision block of whether hit or not for effectively processing branch instructions Each module of the proposed architecture of processing variable-length instruction is described in VHDL structurally and behaviorally and whether it is working well or not is checked on V-System simulator of Model Technology Inc. We synthesized and simulated the architecture using an ASIC Synthesizer tool with 0.6$\mu\textrm{m}$ 5-Volt CMOS COMPASS library. Operation speed is up to 140MHz. The architecture includes about 17,000 gates.

  • PDF

Estimation of Thermal Conductivity of Weathered Granite Soils (화강풍화토의 열전도도 산정에 대한 연구)

  • Park, Hyunku;Park, Hansol;Lee, Seung-Rae;Go, Gyu-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2C
    • /
    • pp.69-77
    • /
    • 2012
  • In general, geothermal energy pile and horizontal ground heat exchangers are installed in shallower depths than conventional vertical ground coupled heat pumps. Consequently their heat exchange performance is strongly governed by thermal conductivity of soil layer. Previous studies have shown that the thermal conductivity of soil above ground water table significantly affects the heat exchange rate because of partially saturated condition in soil and consequent variation of soil thermal conductivity. This paper presents a study result on the prediction of thermal conductivity of weathered granite soils. For weathered granite soils sampled from 5 locations, thermal conductivity tests were conducted with varying porosity and degree of saturation. The existing thermal conductivity models in literatures appeared inappropriate to the weathered granite soils. Hence, an empirical equation was proposed in this paper and its validity was examined by applying it to thermal conductivity test results obtained for weathered granite soils in this study and from literatures.

Preliminary System Design of STEP Cube Lab. for Verification of Fundamental Space Technology (우주기반기술 검증용 극초소형 위성 STEP Cube Lab.의 시스템 개념설계)

  • Kwon, Sung-Cheol;Jung, Hyun-Mo;Ha, Heon-Woo;Han, Sung-Hyun;Lee, Myung-Jae;Jeon, Su-Hyeon;Park, Tae-Young;Kang, Su-Jin;Chae, Bong-Gun;Jang, Su-Eun;Oh, Hyun-Ung;Han, Sang-Hyuk;Choi, Gi-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.430-436
    • /
    • 2014
  • The mission objective of STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project) classified as a pico-class satellite is to verify the technical effectiveness of payloads such as variable emittance radiator, SMA washer, oscillating heat pipe and MEMS based solid propellant thruster researched at domestic universities. In addition, the MEMS concentrating photovoltaic power system and the non-explosive holding and separation mechanism with the advantages of high constraint force and low shock level will be developed as the primary payloads for on-orbit verification. In this study, the feasibility of the mission actualization has been confirmed by the preliminary system design.