• Title/Summary/Keyword: 히스톤

Search Result 53, Processing Time 0.027 seconds

Analysis of DNA Methylation Motif for Aging Related Genes Based on Networks (네트워크 기반 노화 관련 유전자의 DNA 메틸화 모티프 분석)

  • Cho, sung-jin;Ryu, jea-woon;Kim, hak-yong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2012.05a
    • /
    • pp.133-134
    • /
    • 2012
  • 후성유전은 DNA 염기서열이 변화하지 않고 DNA의 메틸화(methylation)및 히스톤 단백질의 변형(modification)등의 후천적 과정에 의해 유전자 발현이 조절되는 현상이다. 특히 DNA 메틸화 정도에 대한 분석은 후성유전을 이해하는 중요한 접근방법 중 하나이다. DNA 메틸화 패턴 분석을 위하여 노화관련 109개 유전자들의 단백질 상호작용 네트워크를 구축하였으며 -3000bp ~ +200bp 사이에 있는 DNA 염기서열 정보를 추출하여 기존에 알려진 메틸화 저항성 (Methylation resistant) 모티프를 네트워크로 구축하였다. 메틸화 모티프기반 단백질 네트워크에서는 기존 단백질 네트워크보다 더 복잡한 구조를 이루고 있었다. 이러한 구조는 동일한 메틸화 모티프들이 여러 유전자들의 활성을 조절할 것으로 추측되며 복잡한 모티프들을 분석하기 위한 방법으로 이용될 수 있을 것이다.

  • PDF

Prediction of epigenetic carcinogenesis based on protein network (단백질 네트워크 기반 후성유전학적 암 발생 기전 예측)

  • Jin, Hye Jeong;Lee, Jihoo;Kim, Hak Yong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.191-192
    • /
    • 2016
  • DNA 염기서열 자체에는 변화가 없으나 크로마틴의 변형을 통하여 유전자의 발현 양상이 변하는 현상을 후성유전이라 한다. 최근에 이런 후성유전학적 변이가 암 발생과 밀접한 연관이 있는 것으로 알려졌다. 본 연구에서는 암 관련 단백질과 암 관련 후성유전 단백질 상호작용 네트워크를 통하여 암과 후성 유전적 관계를 분석하고자 하였다. 먼저 상호작용 네트워크를 기반으로 허브에 해당하는 히스톤 변형 단백질 20개를 추출하였다. 추출한 20개 단백질을 KEGG pathway에 적용하여 암 관련 단백질과의 상관관계를 분석하였다. 암 관련 단백질 발현양상을 확인할 수 있는 Expression Atlas로부터 발현이 증가하거나 감소하는 단백질을 분류하고, 발현 정보를 KEGG pathway 위에 있는 단백질에 적용함으로써 후성유전학적 암 발생 기전을 도출하였다.

  • PDF

In Vitro Phosphorylation of Nuclear Proteins in Isolated Liver Nuclei from Rats Maintained in a Starvation State, Following Refeeding, and from Diabetic Rats with Insulin Injection (단식(斷食), 재급식(再給食) 및 인슈린 투여(投與) 후(後)에 쥐의 간(肝)으로부터 분리된 세포핵의 핵단백질 인산화)

  • Lee, Hyo-Sa;Gibson, David M.
    • Applied Biological Chemistry
    • /
    • v.23 no.1
    • /
    • pp.23-30
    • /
    • 1980
  • Labelling of chromatin proteins with 32P was observed after incubating isolated liver nuclei with $[{\gamma}-32P]$ ATP for 5 minutes at $37^{\circ}C$. The pattern of labelling with 32P was examined on SDS polyacrylamide gel electrophoresis with nuclei from rats maintained in a starvation state for 48 hours, following refeeding for 12 hours; and from fed streptozotocin-diabetic rats with insulin injection 6 hours before sacrifice. With 48h starved rat liver nuclei the level of phosphorylation for 0.14M NaCl soluble proteins was decreased in the molecular weights between 41,000 and 200,000 daltons relative to normal controls. Refeeding the starved rats reversed the change of phosphorylation pattern over 12 hour The level of phosphorylation for five phenol soluble non-histone proteins with molecular weights above 59,000 daltons was somewhat decreased with 48h starved rat liver nuclei as compared with that of normal controls. Starvation also decreased the phosphorylation level of major histones in relation to normal controls. The experiment with insulin injection into fed streptozotocin-diabetic rats showed the tendency to increase phosphorylation of 0.14M NaCl soluble proteins (130,000 dalton protein) and phenol soluble non-histone proteins (155,000 dalton protein). The phosphorylation level of histones appeared to be invariant under the experimental conditoins employed here. These results suggest the possibility that the phosphorylation and dephosphorylation of 0.14M NaCl soluble proteins and $H_1$ histone precede those of other chromatin associated nuclear proteins, It is of interest to find that insulin signal was correlated to phosphorylation of nuclear proteins while glucagon signet dephosphorylated nuclear proteins.

  • PDF

Histone H3K4 Methyltransferase SET1A Stimulates the Adipogenesis of 3T3-L1 Preadipocytes (히스톤 H3K4 메칠화효소 SET1A에 의한 지방세포 분화 촉진)

  • Kim, Seon Hoo;Jung, Myeong Ho
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1104-1110
    • /
    • 2017
  • SET1A is a histone H3K4 methyltransferase that catalyzes di- and trimethylation of histone H3 at lysine 4 (H3K4). Mono-, di-, and trimethylations on H3K4 (H3K4me1, H3K4me2, and H3K4me3, respectively) are generally correlated with gene activation. Although H3K4 methylation is associated with the stimulation of adipogenesis of 3T3-L1 preadipocytes, it remains unknown whether SET1A plays a role in the regulation of adipogenesis of 3T3-L1 preadipocytes. Here, we investigated whether SET1A regulates 3T3-L1 preadipocytes' adipogenesis and characterized the mechanism involved in this regulation. SET1A expression increased during 3T3-L1 preadipocytes' adipogenesis. Consistent with the increased SET1A expression, the global H3K4me3 level had also increased on day 2 after the induction of adipogenesis in 3T3-L1 adipocytes. SET1A knockdown using siRNA in 3T3-L1 preadipocytes inhibited 3T3-L1 preadipocytes' adipogenesis, as assessed by Oil Red O staining and the expression of adipogenic genes, indicating that SET1A stimulates the adipogenesis of 3T3-L1 preadipocytes. SET1A knockdown inhibited the cell proliferation of 3T3-L1 cells during mitotic clonal expansion (MCE) via down-regulation of the cell cycle gene cyclin E1, as well as the DNA synthesis gene, dihydrofolate reductase. Furthermore, SET1A knockdown repressed peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) expression during the late stage of adipogenesis. These results indicate that SET1A stimulates MCE and $PPAR{\gamma}$ expression, which leads to the promotion of 3T3-L1 preadipocytes' adipogenesis.

Insulin-like Growth Factor-I Modulates BDNF Expression by Inhibition of Histone Deacetylase in C2C12 Skeletal Muscle Cells (C2C12 골격근 세포에서 히스톤 탈 아세틸 효소의 억제가 인슐린 유사성장인자(IGF-I)에 의한 BDNF 발현 조절에 미치는 영향)

  • Kim, Hye Jin;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.879-887
    • /
    • 2017
  • It is well established that brain-derived neurotrophic factor (BDNF) is expressed not only in the brain but also in skeletal muscle, and is required for normal neuromuscular system function. Histone deacetylases (HDACs) and insulin-like growth factor-I (IGF-I) are potent regulators of skeletal muscle myogenesis and muscle gene expression, but the mechanisms of HDAC and IGF-I in skeletal muscle-derived BDNF expression have not been examined. In this study, we examined the effect of IGF-I and suberoylanilide hydroxamic acid (SAHA), a pan-HDAC inhibitor, on BDNF induction. Proliferating or differentiating C2C12 skeletal muscle cells were treated with increasing concentrations (0-50 ng/ml) of IGF-I in the absence or presence of $5{\mu}M$ SAHA for various time periods (3-24 hr). Treatment of C2C12 cells with IGF-I resulted in a dose- and time-dependent decrease in BDNF mRNA expression. However, inhibition of HDAC led to a significant increase in the expression of BDNF mRNA levels. In addition, immunocytochemistry revealed high BDNF protein levels in undifferentiated C2C12 skeletal muscle cells, whether untreated, IGF-I-treated, or exposed to SAHA. These results represent the first evidence that IGF-I can suppress the mRNA and protein expression of BDNF; conversely, SAHA attenuates the effects of IGF-I. Consequently, SAHA upregulates BDNF expression in C2C12 skeletal muscle cells.

Effect of Tartary Buckwheat Sprout on Non-Alcoholic Fatty Liver Disease through Anti-Histone Acetyltransferase Activity (쓴메밀 새싹 추출물의 히스톤 아세틸화 효소 활성 저해에 의한 비알코올성 지방간 억제 효능)

  • Hwang, Jin-Taek;Nam, Tae Gyu;Chung, Min-Yu;Park, Jae Ho;Choi, Hyo-Kyoung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.2
    • /
    • pp.169-176
    • /
    • 2017
  • Non-alcoholic fatty liver disease (NAFLD) is caused by chronic lipid accumulation due to dysregulation of lipid metabolism in the liver, and it is associated with various human diseases such as obesity, dyslipidemia, hypertension, and diabetes. Histone acetylation is a representative epigenetic mechanism regulated by histone acetyltransferases (HATs) and deacetylases. We observed that tartary buckwheat sprout (TBS) suppressed lipid accumulation in HepG2 cells through its anti-HAT activity. We showed that TBS was a novel HAT inhibitor with specificity for the major HAT enzyme p300. Importantly, TBS reduced acetylation of total and histone proteins, H3K9, H3K36, and H4K8, resulting in decreased transcriptional activities of sterol regulatory element-binding protein 1c, ATP citrate lyase, and fatty acid synthase. These results suggest that TBS inhibits the NAFLD transcription-modulating activity of lipogenesis-related genes through modification of histone acetylation.

Epigenomic Alteration in Replicative Senescent-mesenchymal Stem Cells (중간엽줄기세포의 노화에 따른 후생유전학적 변화)

  • Oh, Youn Seo;Cho, Goang-Won
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.724-731
    • /
    • 2015
  • Mesenchymal stem cells (MSCs) are characterized by their multipotency capacity, which allows them to differentiate into diverse cell types (bone, cartilage, fat, tendon, and neuron-like cells) and secrete a variety of trophic factors (ANG, FGF-2, HGF, IGF-1, PIGF, SDF-1α, TGF-β, and VEGF). MSCs can be easily isolated from human bone-marrow, fat, and umbilical-cord tissues. These features indicate that MSCs might be of use in stem-cell therapy. However, MSCs undergo cellular senescence during long-term expansion, and this is accompanied by functional declines in stem-cell potency. In the human body, because of their senescence and declines in their microenvironmental niches stem cells fail to maintain tissue homeostasis, and as a result, senescent cells accumulate in tissues. This can lead to age-related diseases, including degenerative disorders and cancers. Recent studies suggest that the number of histone modifications to stem cells’ genomes and aberrant alterations to their DNA methylation increase as stem cells progress into senescence. These epigenetic alterations have been partly reversed with treatments in which DNA methyltransferase (DNMT) inhibitors or histone deacetylase (HDAC) inhibitors are introduced into replicative senescent-MSCs. This review focuses on epigenetic alteration in replicative senescent-MSCs and explains how epigenetic modifications are widely associated with stem-cell senescences such as differentiation, proliferation, migration, calcium signaling, and apoptosis.

A review of epigenetic nutrients on chronic inflammation associated with sarcopenic obesity in the elderly (노인의 저근육형 비만에 따른 만성염증 억제를 위한 후생유전학적 영양에 관한 고찰)

  • No, Jae Kyung
    • Korean Journal of Human Ecology
    • /
    • v.22 no.1
    • /
    • pp.181-188
    • /
    • 2013
  • 노인에게서 두드러지게 나타나고 있는 저근육형 비만은 근육감소를 동반한 체지방의 증가로 신체상의 뚜렷한 체성분의 변화를 야기 시킨다. 이때 골감소증을 동반하여 신체기능의 감소 및 골절장애 그리고 대사성 관련 질환의 위험도가 올라가는 것으로 보고되고 있다. 노화로 인한 체성분의 변화는 단순한 저근육형일 경우와 비만일 때 보다 급격히 증가된 복부내장 지방조직에서 분비되는 염증성 사이토카인, C-반응성 단백질(CRP), 인터루킨(IL)-6, IL-8 및 종양 괴사 인자(TNF-${\alpha}$)들이 단백질 대사를 저해하여 근육량의 감소를 더욱 촉진시키며, 염증관련 대사질환의 유병률에 중요한 요인이다. 본 연구에서는 DNA 메틸화가 당뇨병, 심혈관질환, 암과 같은 만성염증성 질환에 관계하고 있다는 최근 연구 결과를 기초로 하여 항염증 영양소와 생리활성을 갖는 식품인자들의 충분한 섭취가 염증조절에 중요하게 기여할 것으로 생각되며, 또한 염증성 질환의 주요 표식자인 DNA 메틸화와 히스톤 변형을 유발하는 효소의 활성 또는 비 암호화된 RNA의 발현을 조절함으로써 근육량 증가와 체지방 감소에 중요한 역할을 하는 것을 살펴보았다. 따라서 최근 새롭게 인식되는 후생유전학적 연구의 중심에 있는 항염증 영양소의 효과와 체성분 변화와의 긍정적 관계를 중심으로 저근육형 비만의 예방 및 인구고령화에 건강한 노화를 위한 효과적인 방법을 제시하였다.

Recent Trends on Telomerase Activators, Sirtuin Activators, and Senolytics as a Potential Anti-aging Agent (잠재적인 항노화제로 텔로머레이즈 활성화제, 서르튜언 활성화제, 세노릭틱스에 대한 최신 동향)

  • Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.819-825
    • /
    • 2020
  • All living organisms exhibit the characteristics of aging, such as skin wrinkle formation, muscle degeneration, cataracts, and hair graying as the number of aged cells increases over time. Senescence, which is known as a key cause of aging, is directly related to the aging of living organisms because cells are aged by external and internal factors and eventually cell proliferation is stopped. Senescence is caused by the gradual shortening of the telomere with cell division, and lifespan is determined by the length of the telomere. Recently, it has been found that the histone deacetylase, which can influence gene expression, is not only involved in yeast but also deeply involved in anti-aging mechanisms in both C. elegans and humans. It was also discovered that old cells play a decisive role in the aging phenomenon, and it has been reported that it is possible to promote the proliferation of young cells and delay aging by removing these senescent cells from the inside. Therefore, in order to develop potential anti-aging agents in the future, research should begin with an in-depth study of telomerase activators, sirtuin activators, and senolytics.

Epigenetic Characterization of Aging Related Genes (노화 관련 유전자의 후성유전학적 특성 분석)

  • Ryu, Jea Woon;Lee, Sang Cheol;Yoo, Jaesoo;Kim, Hak Yong
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.466-473
    • /
    • 2013
  • Gene expression is regulated by a wide range of mechanisms at the DNA sequence level. In addition, gene expression is also regulated by epigenetic mechanisms through DNA methylation, histone modification, and ncRNA. To understand the regulation of gene expression at the epigenetic level, we constructed aging related gene database and analyzed epigenetic properties that are focused on DNA methylation. The DNA methylation of promoter or upstream region of the genes induces to repress the gene expression. We compared and analyzed distribution between whole human genes and aging related genes in the epigenetic properties such as CGI distribution, methylation motif pattern, and TFBS (transcription factor binding site) distribution. In contrast to methylation motif pattern, CGI and TFBS distributions are positively correlated with epigenetic regulation of aging related gene expression. In this study, the epigenetic data about DNA methylation of the aging genes will provide us to understand phenomena of the aging and epigenetic mechanism for regulation of aging related genes.