DOI QR코드

DOI QR Code

Epigenetic Characterization of Aging Related Genes

노화 관련 유전자의 후성유전학적 특성 분석

  • Received : 2013.07.09
  • Accepted : 2013.08.02
  • Published : 2013.08.31

Abstract

Gene expression is regulated by a wide range of mechanisms at the DNA sequence level. In addition, gene expression is also regulated by epigenetic mechanisms through DNA methylation, histone modification, and ncRNA. To understand the regulation of gene expression at the epigenetic level, we constructed aging related gene database and analyzed epigenetic properties that are focused on DNA methylation. The DNA methylation of promoter or upstream region of the genes induces to repress the gene expression. We compared and analyzed distribution between whole human genes and aging related genes in the epigenetic properties such as CGI distribution, methylation motif pattern, and TFBS (transcription factor binding site) distribution. In contrast to methylation motif pattern, CGI and TFBS distributions are positively correlated with epigenetic regulation of aging related gene expression. In this study, the epigenetic data about DNA methylation of the aging genes will provide us to understand phenomena of the aging and epigenetic mechanism for regulation of aging related genes.

유전자 염기서열의 직접적인 변화 대신 염기의 수정 또는 변형을 통해 유전자 발현이 조절되는 후성유전은 크게 DNA 메틸화(methylation), 히스톤 변형(modification), ncRNA(non-coding RNA)에 의해 제어가 가능하다. 본 연구에서는 후성유전을 이해하기 위해 노화 관련 유전자를 대상으로 데이터베이스를 구축하고, DNA 메틸화를 중심으로 후성 유전학적 특성을 분석하였다. 유전자의 upstream 부위와 프로모터(promoter) 부위에 있는 CpG island(CGI)에 메틸화가 될 경우 유전자 발현을 억제하기 때문에 CGI를 중심으로 전체 유전자 그룹과 노화 관련 유전자 그룹간의 분포도를 비교 분석하였다. 또한 메틸화와 관련된 CGI로부터 얻은 메틸화 관련 motif 패턴을 이용하여 노화 유전자와의 관계를 분석하였다. 노화 관련 유전자의 CGI 분포는 전사인자 결합자리의 분포와 일치하였다. 본 연구에서 제공하는 DNA 메틸화 중심의 후성유전학적 정보는 노화 관련 유전자의 조절과 노화를 이해하는데 도움이 될 것으로 사료된다.

Keywords

References

  1. J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, H. O. Smith, M. Yandell, C. A. Evans, and R. A. Holt, "The sequence of the human genome," Science, Vol.291, No.5507, pp.1304-1361, 2001. https://doi.org/10.1126/science.1058040
  2. E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, and W. FitzHugh, "Initial sequencing and analysis of the human genome," Nature, Vol.409, No.6822, pp.860-921, 2001. https://doi.org/10.1038/35057062
  3. 강태호, 류제운, 유재수, 김학용, "단백질 허브 네트워크에서 도메인분석을 통한 단백질 기능발견 시스템", 한국콘텐츠학회논문지, 제8권, 제1호, pp.259-271, 2008.
  4. R. Jaenisch and A. Bird, "Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals," Nat. Genet., Vol.33, pp.245-254, 2003. https://doi.org/10.1038/ng1089
  5. A. P. Wolffe and M. A. Matzke, "Epigenetics: regulation through repression," Science, Vol.286, No.5439, pp.481-486, 1999. https://doi.org/10.1126/science.286.5439.481
  6. S. Guil and M. Esteller, "DNA methylations, histone codes and miRNAs," Int. J. Biochem, Cell Biol., Vol.41, No.1, pp.87-95, 2009. https://doi.org/10.1016/j.biocel.2008.09.005
  7. T. B. Harris, L. J. Launer, G. Eiriksdottir, O. Kjartansson, P. V. Jonsson, G. Sigurdsson, G. Thorgeirsson, T. Aspelund, M. E. Garcia, M. P. Cotch, H. J. Hoffman, and V. Gudnason, "Age, Gene/Environment Susceptibility- Reykjavik Study: multidisciplinary applied phenomics," Am. J. Epidemiol., Vol.165, No.9, pp.1076-1087, 2007. https://doi.org/10.1093/aje/kwk115
  8. M. Bibikova, Z. Lin, L. Zhou, E. Chudin, E. W. Garcia, B. Wu, D. Doucet, N. J. Thomas, Y. Wang, E. Vollmer, T. Goldmann, C. Seifart, W. Jiang, D. L. Barker, M. S. Chee, J. Floros, and J. B. Fan, "High-throughput DNA methylation profiling using universal bead arrays," Genome Res., Vol.16, No.3, pp.383-393, 2006. https://doi.org/10.1101/gr.4410706
  9. E. Li, C. Beard and R. Jaenisch, "Role for DNA methylation in genomic imprinting," Nature, Vol.366, No.6453, pp.362-365, 1993. https://doi.org/10.1038/366362a0
  10. K. D. Tremblay, J. R. Saam, R. S. Ingram, S. M. Tilghman, and M. S. Bartolomei, "A paternal-specific methylation imprint marks the alleles of the mouse H19 gene," Nat. Genet., Vol.9, No.4, pp.407-413, 1995. https://doi.org/10.1038/ng0495-407
  11. L. Guarente and C. Kenyon, "Genetic pathways that regulate ageing in model organisms nature," Nature, Vol.408, No.6809, pp.255-262, 2000. https://doi.org/10.1038/35041700
  12. D. U. Park, C. H. Kim, S. E. Hong, B. P. Yu, and H. Chung, "agingDB: A database for oxidative stress and calorie restriction in the study of aging," J. Am. Aging Assoc., Vol.26, No.1-2, pp.11-17, 2003.
  13. M. Kaeberlein, B. Jegalianb, and M. McVeyc, "AGEID: a database of aging genes and interventions," Mech. Ageing Dev., Vol.123, No.8, pp.1115-1119, 2002. https://doi.org/10.1016/S0047-6374(02)00011-8
  14. K. G. Becker, K. C. Barnes, T. J. Bright, and S. A. Wang, "The Genetic association Database," Nature Genetics, Vol.36, No.5, pp.431-432, 2004. https://doi.org/10.1038/ng0504-431
  15. M. Gardiner-Garden and M. Frommer, "CpG islands in vertebrate genomes," J. Mol. Biol., Vol.196, No.2, pp.261-282, 1987. https://doi.org/10.1016/0022-2836(87)90689-9
  16. D. Takai and P. A. Jones, "Comprehensive analysis of CpG islands in human chromosomes 21 and 22," Proc. Natl. Acad. Sci. U.S.A., Vol.99, No.6, pp.3740-3745, 2002. https://doi.org/10.1073/pnas.052410099
  17. F. Watt and P. L. Molloy, "Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter," Genes Dev., Vol.2, No.9, pp.1136-1143, 1988. https://doi.org/10.1101/gad.2.9.1136
  18. I. Keshet, Y. Schlesinger, S. Farkash, E. Rand, M. Hecht, E. Segal, E. Pikarski, R. A. Young, A. Niveleau, H. Cedar, and I. Simon, "Evidence for an instructive mechanism of de novo methylation in cancer cells," Nat. Genet., Vol.38, No.2, pp.149-153, 2006. https://doi.org/10.1038/ng1719
  19. T. H. Huang, M. R. Perry, and D. E. Laux, "Methylation profiling of CpG islands in human breast cancer cells," Hum. Mol. Genet., Vol.8, No.3, pp.459-470, 1999. https://doi.org/10.1093/hmg/8.3.459
  20. M. Hackenberg, C. Previti, P. L. Luque-Escamilla, P. Carpena, J. Martínez -Aroza, and J. L. Oliver, "CpGcluster: a distance-based algorithm for CpG-island detection," BMC Bioinformatics, Vol.7, p.446, 2006. https://doi.org/10.1186/1471-2105-7-446
  21. D. Harman, "The aging process," Proc. Natl. Acad. Sci. U.S.A., Vol.78, No.11, pp.7124-7128, 1981. https://doi.org/10.1073/pnas.78.11.7124
  22. F. A. Feltus, E. K. Lee, J. F. Costello, C. Plass, and P. M. Vertino, "DNA motifs associated with aberrant CpG island methylation," Genomics, Vol.87, No.5, pp.572-579, 2006. https://doi.org/10.1016/j.ygeno.2005.12.016
  23. T. I. Lee and R. A. Young, "Transcription of eukaryotic protein-coding genes," Annu. Rev. Genet., Vol.34, pp.77-137, 2000. https://doi.org/10.1146/annurev.genet.34.1.77
  24. R. G. Roeder, "The role of general initiation factors in transcription factors in transcription by RNA polymerase II," Trend Biochem. Sci., Vol.21, No.7442, pp.327-335, 1996. https://doi.org/10.1016/0968-0004(96)10050-5