기존의 인터넷 웹사이트에서는 사용자의 만족을 극대화시키기 위하여 사용자별로 개인화 된 서비스를 제공하는 협력적 필터링 방식을 적용하고 있다. 협력적 여과 기술은 비슷한 선호도를 가지는 사용자들과의 상관관계를 기반으로 취향에 맞는 아이템을 예측하여 특정 사용자에게 추천하여준다. 그러나 협력적 필터링은 추천을 받기 위해서 특정 수 이상의 아이템에 대한 평가를 요구하며, 또한 전체 사용자에 대해 단지 비슷한 선호도를 가지는 일부 사용자 정보에 의지하여 추천함으로써 나머지 사용자 정보를 무시하는 경향이 있다. 그러나 나머지 사용자 정보에도 추천을 위한 유용한 정보가 숨겨져 있다. 우리는 이러한 숨겨진 유용한 추천 정보를 발견하기 위하여 본 논문에서는 협력적 여과 방식과 함께 데이터 마이닝(Data Mining)에서 사용되는 연관 규칙(Association Rule)을 추천에 사용한다. 연관 규칙은 한 항목 그룹과 다른 항목 그룹 사이에 존재하는 연관성을 규칙(Rule)의 형태로 표현한 것이다. 이와 같이 생성된 연관 규칙은 개인 구매도 분석, 상품의 교차 매매(Cross-Marketing), 카탈로그 디자인, 염가 매출품(Loss Leader)분석, 상품 진열, 구매 성향에 따른 고객 분류 다양하게 사용되고 있다. 그러나 이런 연관 규칙은 추천 시스템에서 잘 응용되지 못하고 있는 실정이다. 본 논문에서 우리는 연관 규칙을 추천 시스템에 적용해, 항목그룹 사이에 연관성을 유도함으로써 추천에 효율적으로 사용할 수 있음을 보였다 즉 전체 사용자의 히스토리(History) 정보를 기반으로 아이템 사이의 연관 규칙을 유도하고 협력적 여과 방식과 함께 보조적으로 연관 규칙을 추천을 위해 사용함으로써 추천 시스템에 효율성을 높였다.
본 논문에서는 IP 히스토리 정보를 이용하여 기존의 연결된 flow와 새로 도착한 flow를 다른 우선순위로 서비스하여 특정 서브넷을 DDoS(Distributed Denial of Service) 공격으로부터 보호하는 방어 시스템을 제안한다. DDoS 공격은 일반적으로 네트워크 노드 혹은 링크의 리소스가 제한되어 있으며 네트워크 리소스에 대한 사용자의 수요가 실제 네트워크 노드 혹은 링크의 용량을 초과하는 경우에 발생하게 된다. 제안된 방어 시스템은 두 단계로 나뉘어서 작동하게 되는데, 첫 번째 단계에서는 접속을 시도하는 외부 IP에 대해 샘플링기법을 사용하여 모니터링 하는 IP주소의 개수를 줄이고, 두 번째 단계에서는 정상적인 IP의 목록을 관리하고 DDoS 공격이 발생하였을 때 IP 목록에 기반해 기존의 연결된 flow와 새로 도착한 flow를 구별함으로써 기존의 연결된 flow에 대해서 지속적이고 정상적인 서비스를 제공한다. 제안된 DDoS 방어 시스템의 성능은 시뮬레이션을 통해 평가한다.
객체 추적 알고리즘들은 객체 인식 결과를 이용한 관심영역 설정을 통해 영상 전체에 대한 연산이 수행되는 것을 방지하여 연산량을 줄일 수 있다. 따라서 객체 인식 알고리즘의 정확한 객체 검출은 객체 추적에서 매우 중요한 과정이다. 고정된 카메라를 기반으로 하여 이동하는 객체를 검출 하는 방법으로 배경 차 알고리즘이 널리 사용되어왔고 많은 연구에 의해 배경 모델링 방법이 개선되면서 배경 차 알고리즘의 성능이 개선되었으나 여전히 정확하지 못한 배경 모델링에 의한 객체 오검출의 문제를 가진다. 이에 본 논문에서는 제스쳐 인식에 주로 사용되는 모션 히스토리 이미지 알고리즘을 배경 차 알고리즘과 융합하여 기존의 배경 차 알고리즘이 가지는 문제점을 극복할 수 있는 다중 이동객체 검출 알고리즘을 제안한다. 제안하는 알고리즘은 융합 과정 추가로 수행시간이 다소 길어지나 실시간성을 만족하며 기존의 배경 차 알고리즘에 비해 높은 정확도를 가짐을 실험을 통해 확인하였다.
시맨틱 웹 기술의 발전에 따라 온톨로지는 점점 복잡해지고 대용량화되고 있어서 기존의 온톨로지 저작도구를 이용하여 인스턴스를 구축하게 되면 인스턴스 관리에 많은 어려움이 따르기 때문에 사용자 입장에서 편리하게 인스턴스 생성을 지원해주는 도구가 필요하게 되었다. 본 논문에서 개발한 온톨로지 지원도구 OntoManager는 계층적 인스턴스들의 관계를 쉽게 구현하기 위해서 히스토리 기반의 인스턴스 생성 뷰를 제공하여 인스턴스 생성 작업 시 사용자의 현재 작업 뷰에서 흐트러지지 않고 새로운 클래스의 인스턴스 생성할수 있으며 생성된 인스턴스의 자동 연결 기능을 제공한다. 그리고 웹브라우저와 개체명 인식 기능을 제공하여 웹 페이지의 텍스트에서 인스턴스 생성에 필요한 부가 정보를 자동 추천 해줘서 인스턴스 속성 값을 쉽게 구축할 수 있도록 도와준다. 마지막으로 이미지 어노테이션 기능을 제공하여 이미지의 특정 영역 정보를 선택하여 속성 값으로 가지는 인스턴스 생성도 지원해준다.
OS-level의 가상화 기술은 애플리케이션을 배포하기 위한 새로운 패러다임으로, 기존의 가상화 기술인 가상 머신을 대체할 수 있는 기술로서 주목받고 있다. 특히 컨테이너는 기존의 리눅스 컨테이너에 유니온 마운트 포인트(Union Mount Point) 와 레이어 구조의 이미지를 적용함으로써 보다 빠르고 효율적인 애플리케이션의 배포가 가능하다. 이러한 컨테이너의 특징들은 스냅숏 기능을 제공하는 레이어 구조의 파일 시스템에서만 사용될 수 있으며, 애플리케이션의 특징에 따라 적절한 레이어 파일 시스템을 선택하는 것이 요구된다. 따라서 본 논문에서는 대표적인 레이어 파일 시스템들의 특징을 조사한 뒤, 레이어 파일 시스템의 동작 원리인 Allocate-on-Demand 및 Copy-up 방식에 따른 파일 시스템의 쓰기 성능 평가를 수행한다. 또한 각 레이어 파일 시스템 방식의 블록 입출력 사용 데이터를 학습한 인공 신경망을 통해 임의의 애플리케이션에 대해 적합한 레이어 파일 시스템 방식을 결정하는 방법을 제시하고 이에 대한 타당성을 검토한다.
본 논문에서는 비디오 콘텐츠 검색 및 관리를 위하여 OTT 디바이스 내부의 DB 개발과 이와 연동하여 비디오 질의 검색 서비스를 탑재할 인터페이스(리모콘 스마트폰) 어플리케이션에서 필수적인 요소인 검색 알고리즘의 개발 방법을 제안한다. 디지털 방송이 시작되고 각 가정에 보급이 됨으로써 사용자들이 선택하여 시청하는 채널 및 프로그램의 수와 종류는 공중파 환경과 비교하여 폭발적으로 증가하였다. 채널의 수가 수십에서 수백 개로 늘어남에 따라 사용자는 자신이 원하는 프로그램을 찾기가 점점 어려워지게 되었고 이 문제를 해결하기 위해 콘텐츠 공급자는 소비자의 취향에 맞는 프로그램을 추천해줄 방법이 필요하게 되었다. 시청자의 시청 패턴을 분석하여 사용자의 취향을 분석하여 적합한 프로그램을 추천해줄 수 있는 방법이 필요하다. 이러한 문제를 해결하기 위하여 시청자의 시청 패턴을 분석하여 시청자의 취향에 적합한 프로그램을 추천해줄 수 있는 방법이 필요하다. 본 연구는 개인의 시청 패턴과 히스토리를 바탕으로 OTT 프로그램의 콘텐츠를 추천하는 알고리즘을 구현하였다.
최근 환경기반 인증 기술로 사용자의 로그인 히스토리를 계정도용 또는 정상 로그인으로 분류한 후 사용자별로 통계모델을 만들어 사용자를 인증하는 Reinforced authentication이 제안되었다. 하지만 Reinforced authentication은 사용자가 과거에 계정도용을 당한 적이 없으면 공격을 당할 가능성이 높다. 본 논문은 이러한 문제점을 해결하기 위해 기계학습 알고리즘을 이용하여 사용자 환경정보와 타인의 환경정보를 함께 학습시켜 2-Class 사용자 모델을 만드는 무자각 인증 기술을 제안한다. 제안한 기술의 성능을 평가하기 위해 목표 사용자에 대해 아무 정보도 없는 무 지식 공격자와 목표 사용자에 대해 한 가지의 정보만 알고 있는 정교한 공격자에 대한 Evasion Attack을 실험하였다. 무 지식 공격자에 대한 실험 결과 Class 0의 Precision과 Recall 각각 1.0과 0.998로 측정되었으며, 정교한 공격자에 대한 실험결과 Class 0의 Precision과 Recall 각각 0.948과 0.998로 측정되었다.
밀폐된 작업현장에서는 현장의 환경데이터가 작업자의 안전에 큰 영향을 미치므로 작업 현장의 관리가 중요하다. 이에 오늘날의 산업현장은 공장 내 센서를 통해 데이터를 수집하고 분석하는 데이터 기반 공장 형태로 바뀌어 가고 있으며, 이를 안전하게 운영하기 위한 관리시스템을 필요로 한다. 일반적으로 안전관리시스템은 중앙 서버와 데이터베이스를 통해 데이터를 저장하고 관리하는 방식으로 데이터의 위변조 및 유실 가능성이 높아 신뢰성이 다소 부족하다. 본 논문에서는 3세대 블록체인 기술인 EOS 기반의 작업자 안전관리 시스템을 개발한다. 개발된 시스템은 EOS 블록체인을 이용하기 위한 스마트 컨트랙트와 블록체인 기반으로 동작하는 3가지의 분산 애플리케이션으로 구성된다. 사용자의 역할에 따라, 작업자 및 관리자 애플리케이션은 작업의 시작과 종료에 대한 요청과 그에 따른 승인 작업을 블록체인 트랜잭션으로 수행한다. 수행된 전체 트랜잭션 히스토리는 블록체인 네트워크에 참여한 모든 노드에 분산 저장되어 사실상 데이터 위변조가 불가능하다. 시스템 운영자 애플리케이션은 작업자와 관리자에게 기능 수행에 적합한 어카운트 권한을 부여하고 작업현장의 안전성을 확보하기 위한 IoT 데이터의 적절한 기준치를 설정한다. 현장센서 플랫폼에서 받은 IoT 데이터와 작업의 흐름에 따른 요청과 승인 정보는 EOS 스마트 컨트랙트에 명시적으로 저장되고 관리된다.
현대에 거래되는 재화의 종류는 소비형태의 변화에 의해 급속도로 많아지고 있다. 그러나, 거래되는 재화의 종류가 많아진 만큼 이에 대한 정확한 가치판단이 흐려지는 경우가 발생한다. 미술품, 창작물 등의 재화는 소비자가 올바른 가치를 판단하기 어렵다는 단점이 크게 부각되고, 거래 형태 또한 다양하여 이에 대한 신뢰성을 보장받기 힘들다는 문제가 발생한다. 다양한 재화에 대한 접근성이 확대된 현재, 이러한 단점들은 공유경제 시장의 안정성을 저해하는 요인으로 꼽힌다. 본 논문에서는 이러한 문제점을 해결하기 위하여 신뢰성 있는 중개인을 통한 블록체인 기반의 재화 계약 서비스를 제안한다. 제안한 서비스는 이더리움 블록체인에서 동작하는 스마트 컨트랙트를 사용하여 신뢰성 있는 중개인을 등록하고 재화의 가치검증 및 계약 과정에 사용한다. 또한 재화의 등록 내용, 제안 및 계약 과정을 블록체인에 등록하여 계약 과정의 신뢰성을 보장한다. 모든 동작 과정은 스마트 컨트랙트에 등록되고, 이더리움 블록체인의 트랜잭션 히스토리에 저장되므로, 등록된 데이터의 신뢰성을 보장할 수 있다. 또한 등록, 제안 및 계약의 전 과정이 스테이트 머신 기반의 스마트 컨트랙트에 의해 동작하기 때문에 사용자는 계약 과정을 보다 안전하게 제어할 수 있다.
본 논문에서는 사용자의 제스처에 따라 반응하는 인터랙티브 미디어 콘텐츠를 프로그래밍 경험이 없는 사용자가 쉽게 제작할 수 있도록 하는 콘텐츠 제작 프레임워크를 제안한다. 제안 프레임워크에서 사용자는 사용하는 제스처와 이에 반응하는 미디어의 효과를 번호로 정의하고, 텍스트 기반의 구성 파일에서 이를 연결한다. 제안 프레임워크에서는 사용자의 제스처에 따라 반응하는 인터랙티브 미디어 콘텐츠를 사용자의 위치를 추적하여 프로젝션 시키기 위하여 동적 프로젝션 맵핑 모듈과 연결하였다. 또한, 제스처 인식을 위한 처리 속도와 메모리 부담을 줄이기 위하여 사용자의 움직임을 그레이 스케일(gray scale)의 모션 히스토리 이미지(Motion history image)로 표현하고, 이를 입력 데이터로 사용하는 제스처 인식을 위한 합성곱 신경망(Convolutional Neural Network) 모델을 설계하였다. 5가지 제스처를 인식하는 실험을 통하여 합성곱 신경망 모델의 계층수와 하이퍼파라미터를 결정하고 이를 제안 프레임워크에 적용하였다. 제스처 인식 실험에서 97.96%의 인식률과 12.04 FPS의 처리속도를 획득하였고, 3가지 파티클 효과와 연결한 실험에서 사용자의 움직임에 따라 의도하는 적절한 미디어 효과가 실시간으로 보임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.