히스토그램을 이용한 장면 전환 검출 기법은 순차적으로 접근하여 모든 프레임의 히스토그램을 구하고 각 히스토그램의 차를 이용하여 장면 전환을 검출한다. 하지만, 장면 전환이 비교적 적게 나타나는 부분에서는 모든 프레임을 비교한다는 것은 비효율적이다. 본 논문에서는 모든 프레임을 순차적으로 비교하지 않고 가중치를 조절하여 장면 전환이 거의 발생하지 않는 경우는 많은 프레임을, 장면 전환이 많은 곳에서는 적은 프레임을 생략하여 히스토그램을 비교하는 방법을 제안한다. 이 방법은 생략하는 프레임 수를 조절하기 때문에 순차적으로 처리하는 것보다 빠른 처리 시간을 보일 수 있다.
본 논문에서는 동영상에서 샘플 프레임과 주변 화소의 컬러 히스토그램을 이용한 새로운 장면 전환 방법을 제시하였다. 4개의 대표 컬러에 대한 주변 화소의 컬러 히스토그램을 이용하여 장면 전환 검출을 함으로써 기존의 컬러 히스토그램을 이용한 장면 전환 검출의 단점을 보완하였다.
본 논문은 배경이 고정되지 않은 복잡한 동영상에서의 물체 추적을 위하여 다중 모델 색상 히스토그램 역투영(Multi Model Color Histogram Back-projection)방법을 제안한다. 색상 히스토그램 역투영(Color Histogram Back-projection)을 이용하면 카메라의 움직임 때문에 발생하는 배경의 변화에 관계없이 물체를 추적할 수 있다. 기존의 방법은 추적하려는 물체에 대해 하나의 모델만을 적용했기 때문에, 배경영역 색분포의 영향을 많이 받는다. 이를 해결하기 위해 다중 모델 색상 히스토그램 역투영 방법을 이용하였다. 이 방법은 추적하려는 물체에 대해 여러 개의 모델을 구하여 각각에 대해 색상 히스토그램 역투영을 수행한다 또한 역투영 이진 영상에서 물체의 위치를 결정하기 위한 수평, 수직 프로젝션 방법의 문제점을 레이블링(Labeling)을 사용하여 보완하였다.
대부분의 이진화 알고리즘은 임계치를 결정하기 위하여 히스토그램을 사용하여 밝기분포를 분석한다. 배경과 물체의 명도차이가 큰 경우에는 분할을 위해 양봉(bimodal) 히스토그램으로 표현하여 최적의 임계치를 찾기 위해 히스토그램 골짜기(valley)를 선택하는 것만으로도 양호한 임계치 결과를 얻을수 있으나, 배경과 물체의 밝기 차이가 크지 않거나 밝기 분포가 양봉 특성을 보이지 않을 때는 히스토그램 분석만으로 적절한 임계치를 얻기 어렵다. 그리고 한 영상에서는 넓은 영역에 걸쳐 명암도 변화가 일어나고 다양한 유형의 물체가 포함되어 있으므로 스케치 특징점 유무를 판별하는 임계치의 결정에는 애매 모호함이 존재한다. 따라서 본 논문에서는 영상에 대해 삼각형 타입의 소속함수를 적용하여 임계치를 동적으로 설정하고 영상을 이진화하는 방법을 제안한다. 제안된 퍼지 이진화 방법은 평균 밝기 값을 기준으로 가장 어두운 픽셀 값과 가장 밝은 픽셀값의 거리를 계산하여 밝기의 조정률을 구하여 최소 밝기값과 최대 밝기 값을 설정하고 삼각형의 소속 함수에 적용한다. 소속 함수에 적용된 소속도를 a-cut 을 적용하여 영상을 이진화한다. 다양한 영상에 적용한 결과, 기존의 이진화 방법보다 제안된 퍼지 이진화 방법이 효율적인 것을 알 수 있었다.
영상 대비 향상은 영상 처리 분야에서 중요한 역할을 한다. 히스토그램 스트레칭이나 히스토그램 균등화 등 기존 대비 향상 기법들과 히스토그램 균등화 기반의 수많은 방법들은 저대비에 소수의 화소들이 넓게 퍼져 있는 영상에 대해서 만족할만한 결과를 내지 못한다. 따라서 본 논문은 군집화 방법에 기반한 새로운 영상 대비 향상 기법을 제안한다. 히스토그램의 군집수는 원영상의 히스토그램을 분석하여 얻을 수 있다. 히스토그램 성분들을 K-means 알고리즘을 이용하여 군집화한다. 그리고 히스토그램 군집 범위와 군집의 화소수 비율을 비교하여 히스토그램 스트레칭과 히스토그램 균등화를 선택적으로 적용한다. 실험 결과로부터 제안한 방법이 기존의 대비 향상 기법들보다 더 효과적임을 확인할 수 있었다.
최근 스마트폰, 카메라, 휴대용 기기 등의 확산으로 다양한 분야에서 영상의 화질 향상의 필요성이 증가하고 있다. 영상의 화질 향상에 큰 영향을 주는 방법이 명암대비 향상이며 명암대비를 향상시키는 대표적인 방법으로는 히스토그램 평활화 방법이 있으며 다양한 연구가 이루어지고 있다. 그러나 일반적인 히스토그램 평활화 방법은 밝기만을 재조정하는 방법으로써 히스토그램이 한 쪽으로 치우친 영상의 경우 과도한 밝기 변화로 인하여 블록현상과 같은 왜곡이 발생한다. 본 논문에서는 히스토그램 분포의 평균 밝기를 균형 있게 재 분포 및 압축을 통해서 명암대비 향상 기법을 제안한다. 제안한 방법은 과도한 명암대비 증가로 인한 과포화 현상을 억제하기 위하여 히스토그램 빈도수에 따라 히스토그램을 차등 압축 시키며, 한 쪽으로 치우친 히스토그램을 균형 있게 재배열함으로써 영상의 밝기를 균형 있게 한다. 실험결과 제안방법은 기존 방법에 비해 영상의 밝기가 균형적이며 기존 방법에 비해 과포화 현상 없이 좋은 명암대비 향상 효과를 보였다.
본 논문에서는 HDR(high dynamic range)영상을 LDR(low dynamic range)영상장치에 표현하기 위해 히스토그램 변형기법과 구간별 히스토그램 평활화를 이용한 인지기반의 톤 맵핑(tone mapping)기법을 제안한다. 인간의 시각특성을 이용한 톤 맵핑 알고리듬은 상당히 효과적이지만 고정된 형태의 맵핑 함수를 사용하기 때문에 모든 영상에서 동일한 효과를 얻지 못한다. 그리고 히스토그램 변형 기법을 적용한 인지기반 톤 맵핑 알고리듬의 경우 인지기반 톤 맵핑 함수를 이용해서 원 영상의 히스토그램을 제한하고 보상과정을 통해서 적극적인 톤 맵핑 함수를 얻을 수 있다. 그렇기 때문에 contrast 의 향상과 원 영상의 디테일 보존을 함께 얻을 수 있다. 하지만 전역 히스토그램 평활화의 사용으로 영상이 지나치게 밝아지거나 지나치게 어두워지는 경우가 발생할 수 있다. 제안하는 방법은 구간별 히스토그램 평활화를 적용하여 톤 맵핑 함수를 얻는다. 이는 과도한 평활화를 방지하고 원 영상의 디테일 보존의 성능이 더 좋다. 시뮬레이션 및 실험을 통해 성능을 비교하고 기존 방법에 비해 제안한 방법이 우수함을 입증한다.
본 논문에서는 중복되지 않는 서로 다른 카메라의 영상을 활용한 동일 객체 판단 및 추적 기술에 대하여 소개한다. 영상분석에서 색상 정보는 가장 기본이 되는 중요한 정보라 할 수 있다. 특히 색상 정보를 이용하는 히스토그램은 일반적으로 추적, 인식 등에 많이 사용되고 있으나 이동 객체나 조도 변화 등에 따라 성능에 차이를 보인다. 이러한 문제점을 해결하고자 본 연구에서는 동일 객체 판단을 위해 대표적으로 사용되는 히스토그램 정합의 두 알고리즘(HSV 공간에서의 Histogram matching 방법과 RGB 공간에서의MCSHR 알고리즘) 결합을 통해 분할 히스토그램은 객체를 3조각으로 나누어 전체와 각각의 히스토그램을 구하며 MCSHR을 RGB공간이 아니 Hue 공간 히스토그램으로 변경하여 유사도를 도출 하였으며 조도 변화에 강인한 모델을 만들기 위해 Controlled equalization기법을 사용하여 원 영상의 히스토그램의 확률과 평활화한 히스토그램의 확률 융합을 시도 하였다. 해당 실험의 비교 결과 기존 HSV공간에서 Histogram matching을 통한 유사도 비교보다 12.9% 향상된 정합율의 결과를 보였다. 또한 영상 정보와 스마트 기기를 통한 인식 방법의 융합을 통해 영상 내에서 동일 객체 판단에 대한 추가 정보 제공에 대해 방법론 적인 부분을 제안 하였다.
영상의 색상 정보는 비슷한 영상들의 유사도를 효과적으로 측정하는데 사용된다. 그러나, 색상정보의 크기는 영상 데이터베이스에서 효율적으로 다루기에는 너무나 방대하다. 본 논문에서는 히스토그램 보간법에 의하여 유사한 영상들을 검색하는 새로운 방법을 제시한다 알고리즘의 기본 원리는 색상 히스토그램의 분포를 이용하여 영상을 검색하는 기존 방법에서 출발한다. 그러나, 질의 영상과 대상 영상과의 유사도를 결정하는데 있어서 보간법에 의하여 히스토그램의 분포도를 간략화 시킨다는 근본적인 차이를 가지고 있다. 색상 히스토그램의 분포는 최적 차수의 다항식으로 보간되어서 표현되었다. 히스토그램의 분포가 보간된 후에는 저차원 다항식의 계수들만이 색상 구분자로서 데이터베이스에 저장되고 검색하는데 활용될 수 있다. 제안된 방법은 실제 영상들에 적용되었으며 만족할 만한 결과를 보여주고 있다.
영상 표시 장치에서 대조 이미지의 왜곡 현상을 보완하기 위해 히스토그램 평활화(Histogram Equalization)와 플래토 평활화(Plateau Equalization)가 사용된다. 히스토그램 평활화(Histogram Equalization)를 이용하여 명암대비를 증가 시킬 경우 과도한 이미지의 밝기 변화에 따른 과포화 현상이 발생하며 실시간 시스템에서는 물체 추적에 왜곡 현상이 발생한다. 특히, 적외선 영상(infrared image)과 같이 명암비가 한쪽으로 치우쳐 있는 영상들을 명암비를 개선하기 위해서는 플래토 평활화(Plateau Equalization)와 같은 영상 개선 방법이 필수적이다. 플래토 평활화에서는 임계값을 사용하는 방법이 제시되고 있지만 실험에 의한 최적 임계값을 찾아내는 방식이며, 이 방법은 입력되는 새로운 영상마다 임계값을 실험에 의해 매번 반복해서 도출해야 문제점이 있다. 본 논문에서 제안하는 방법은 과포화 되는 이미지 영역의 문제를 해결하기 위해 제시하는 방법으로 히스토그램 평활화(Histogram Equalization)의 동적 분할하는 알고리즘에 근거하되, 입력 영상에따라 적응적으로 임계값을 설정하는 기법을 제안한다. 실험을 통해 제안하는 방법이 실시간 영상에서 기존의 동적분할 히스토그램에 비해 자연스럽게 명암비를 개선하여 과포화 되거나 중요한 정보를 누락하여 왜곡 되지 않게 자연스러운 화면을 재생하는 방법을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.