DOI QR코드

DOI QR Code

Image Search Using Interpolated Color Histograms

히스토그램 보간에 의한 영상 검색

  • 이효종 (전북대학교 전자정보공학부·공업기술연구센터)
  • Published : 2002.10.01

Abstract

A set of color features has been efficiently used to measure the similarity of given images. However, the size of the color features is too large to implement an indexing scheme effectively. In this paper a new method is proposed to retrieve similar images using an interpolated color histogram. The idea is similar to the already reported methods that use the distributions of color histograms. The new method is different in that simplified color histograms decide the similarity between a query image and target images. In order to represent the distribution of the color histograms, the best order of interpolated polynomial has been simulated. After a histogram distribution is represented in a polynomial form, only a few number of polynomial coefficients are indexed and stored in a database as a color descriptor. The new method has been applied to real images and achieved satisfactory results.

영상의 색상 정보는 비슷한 영상들의 유사도를 효과적으로 측정하는데 사용된다. 그러나, 색상정보의 크기는 영상 데이터베이스에서 효율적으로 다루기에는 너무나 방대하다. 본 논문에서는 히스토그램 보간법에 의하여 유사한 영상들을 검색하는 새로운 방법을 제시한다 알고리즘의 기본 원리는 색상 히스토그램의 분포를 이용하여 영상을 검색하는 기존 방법에서 출발한다. 그러나, 질의 영상과 대상 영상과의 유사도를 결정하는데 있어서 보간법에 의하여 히스토그램의 분포도를 간략화 시킨다는 근본적인 차이를 가지고 있다. 색상 히스토그램의 분포는 최적 차수의 다항식으로 보간되어서 표현되었다. 히스토그램의 분포가 보간된 후에는 저차원 다항식의 계수들만이 색상 구분자로서 데이터베이스에 저장되고 검색하는데 활용될 수 있다. 제안된 방법은 실제 영상들에 적용되었으며 만족할 만한 결과를 보여주고 있다.

Keywords

References

  1. Y. S. Kim, W. Y. Kim, 'Content-Based Trademark Retrieval system using a visually Salient feature,' Image and Vision Computing, Vol.16, pp.931-939, 1998 https://doi.org/10.1016/S0262-8856(98)00060-2
  2. M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, and B. Dom, Query by Image and Video Content : The QB-IC System. IEEE Computer, Vol.28, No.9, pp.23-32, 1995 https://doi.org/10.1109/2.410146
  3. A. R. Webb, Multidimensional Scaling by Iterative Majo-rization Using Radial Bassis Functions, Pattern Recognition, Vol.28, No.5, pp.753-759, 1995 https://doi.org/10.1016/0031-3203(94)00135-9
  4. John R. Smith and Shih-Fu Chang, Visualseek : a fully automated content-based image query system, In Proceedings of ACM Multimedia 96, Boston MA USA, pp.87-98, 1996 https://doi.org/10.1145/244130.244151
  5. S Panchanathan and Y. C. Park and K. S. Kim and P. K. Kim and F. Golshani, The Role of Color in Content-Based Image Retrieval, In Proceedings of International Conference on Image Processing, pp.517-520, 2000 https://doi.org/10.1109/ICIP.2000.901009
  6. Jacopo M. Corridoni and Alberto Del Bimbo and Enrico Vicario, Image Retrieval by Color Semantics with Incomplete Knowledge, Journal of the American Society of Information Science, Vol.49, No.3, pp.267-282, 1988 https://doi.org/10.1002/(SICI)1097-4571(1998)49:3<267::AID-ASI7>3.3.CO;2-U
  7. J. Huang and S.R. Kumar and M. Mitra and W. Zhu and R. Zabih, Image Indexing Using Color Correlograms, IEEE Conference Computer Vision & Pattern Recognition, pp. 762-768, 1997 https://doi.org/10.1109/CVPR.1997.609412
  8. G. Pass and R. Zabih, Histogram Refinement for Content Based Image Retrieval, IEEE Workshop on Applications Computer Vision, pp.96-102, 1996 https://doi.org/10.1109/ACV.1996.572008
  9. J. Smith and S. F Chang, Tools and Techniques for Color Image Retrieval, SPIE, pp.2-7, 1996
  10. M. A. Stricker and M. Orengo, Similarity of Color Images, SPIE Storage Retrieval Still Image Video Databases, pp. 381-392, 1996
  11. W. Y. Ma and H. Zhang, Benchmarking of Image Features for Content-Based Retrieval, IEEE 32nd Asilomar Conference on signals, systems, Computers, pp.253-257, 1998 https://doi.org/10.1109/ACSSC.1998.750865
  12. A. Guttman, 'R-Trees : A Dynamic index Structure for spatial Searching,' Proc. ACM SIGMOD, pp.47-57, 1984 https://doi.org/10.1145/602259.602266
  13. M. Beatty and B. S. Manjunath, Dimensionality Reduction Using Multidimensional Scaling for Image Search, International Conference on Image Processing, pp. 835-838, 1997 https://doi.org/10.1109/ICIP.1997.638626
  14. Haitao Jiang, Abdelsalan Helal, 'Scene change detection techniques for video database systems,' Multimedia Systems, 6, pp.186-195, 1998 https://doi.org/10.1007/s005300050087
  15. Scott T. Leutenegger and Mario A Lopez, 'The Effect of Buffering on the Performance of R-Tree,' IEEE on Knowledge and Data Engineering, Vol.12, No.l, Jan., 2000 https://doi.org/10.1109/69.842248