• Title/Summary/Keyword: 히든 마코프 모델

Search Result 19, Processing Time 0.022 seconds

An Automatic Summarization of Call-For-Paper Documents Using a 2-Phase hidden Markov Model (2단계 은닉 마코프 모델을 이용한 논문 모집 공고의 자동 요약)

  • Kim, Jeong-Hyun;Park, Seong-Bae;Lee, Sang-Jo;Park, Se-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.243-250
    • /
    • 2008
  • This paper proposes a system which extracts necessary information from call-for-paper (CFP) documents using a hidden Markov model (HMM). Even though a CFP does not follow a strict form, there is, in general, a relatively-fixed sequence of information within most CFPs. Therefore, a hiden Markov model is adopted to analyze CFPs which has an advantage of processing consecutive data. However, when CFPs are intuitively modeled with a hidden Markov model, a problem arises that the boundaries of the information are not recognized accurately. In order to solve this problem, this paper proposes a two-phrase hidden Markov model. In the first step, the P-HMM (Phrase hidden Markov model) which models a document with phrases recognizes CFP documents locally. Then, the D-HMM (Document hidden Markov model) grasps the overall structure and information flow of the document. The experiments over 400 CFP documents grathered on Web result in 0.49 of F-score. This performance implies 0.15 of F-measure improvement over the HMM which is intuitively modeled.

An Anomaly Detection based on Probabilistic Behavior of Hidden Markov Models (은닉마코프모델을 이용한 이상징후 탐지 기법)

  • Lee, Eun-Young;Han, Chan-Kyu;Choi, Hyoung-Kee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.1139-1142
    • /
    • 2008
  • 인터넷의 이용이 증가함에 따라 네트워크를 통한 다양한 공격 역시 증가 추세에 있다. 따라서 네트워크 이상징후를 사전에 탐지하고 상황에 따라 유연하게 대처할 수 있도록 하기 위한 연구가 절실하다. 본 연구는 은닉마코프모델을 이용해 트래픽에서 이상징후를 탐지하는 기법을 제안한다. 제안하는 기법은 시계열 예측 기법을 이용해 트래픽에서 징후를 추출한다. 징후추출 과정의 결과를 은닉마코프모델을 활용한 징후판단과정을 통해 네트워크 이상징후인지를 판단하고 결정한다. 일련의 과정을 perl로 구현하고, 실제 공격이 포함된 트래픽을 사용하여 검증한다. 하지만 결과가 확연히 증명되지는 않는데, 이는 학습과정의 부족과 실제에 가까운 트래픽의 사용으로 인해 나타나는 현상으로 연구의 본질을 흐리지는 않는다고 판단된다. 오히려 실제 상황을 가정했을 때 접근이나 적용을 판단함에 관리자의 의견을 반영할 수 있으므로 공격의 탐지와 판단에 유연성을 증대시킬 수 있다. 본 연구는 실시간 네트워크의 상황 파악이나 네트워크에서의 신종 공격 탐지 및 분류에 응용가능할 것으로 기대된다.

Modeling and Prediction of Time Series Data based on Markov Model (마코프 모델에 기반한 시계열 자료의 모델링 및 예측)

  • Cho, Young-Hee;Lee, Gye-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.225-233
    • /
    • 2011
  • Stock market prices, economic indices, trends and changes of social phenomena, etc. are categorized as time series data. Research on time series data has been prevalent for a while as it could not only lead to valuable representation of data but also provide future trends as well as changes in direction. We take a conventional model based approach, known as Markov chain modeling for the prediction on stock market prices. To improve prediction accuracy, we apply Markov modeling over carefully selected intervals of training data to fit the trend under consideration to the model. Another method we take is to apply clustering to data and build models of the resultant clusters. We confirmed that clustered models are better off in predicting, however, with the loss of prediction rate.

A study for classification of students' learning-styles with HMM (Hidden Markov Model을 이용한 학습자 성향 파악에 관한 연구)

  • Jeong Yeong-Mo;Lee Ji-Hyeong;Cha Hyeon-Jin;Park Seon-Hui;Yun Tae-Bok;Kim Yong-Se
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.310-313
    • /
    • 2006
  • 지능형 학습 시스템(ITS, Intelligent Tutoring System)은 학습자의 학습 스타일을 인지하여 학습자에 맞는 학습전략을 세우고 적절한 학습 서비스를 제공하는 시스템이다. 기존의 학습시스템은 학습자의 학습 스타일 보다는 학습 컨텐츠에 중심을 두어 학습자에게 맞는 학습 전략을 적절히 세우는 과정이 부족했다. 이에 본 논문에서는 학습자의 학습과정에서 발생한 데이터를 기반으로 학습자의 학습 스타일을 파악하는 방법을 제안한다. 이를 위해 서양 건축양식 학습을 위한 교육 컨텐츠를 이용하였으며, 수집된 데이터를 분석하여 Folder & Silverman 이 제시한 학습 스타일에 근거한 학습자의 학습 스타일을 추출하였다. 실험에서는 70명의 데이터를 수집하였고, 학습자가 교육 컨텐츠를 학습한 순서에 대한 시계열 데이터를 기반으로 학습자 성향을 알아보기 위하여 은닉 마코프 모델(Hidden Markov Model)을 사용하였다. 은닉 마코프 모델을 적용하여 얻은 분석 결과를 가지고 각 학습자에게 맞는 학습 스타일을 진단하였다. 은닉 마코프 모델에서 얻은 학습 스타일 진단 모델은 향후에 학습자 학습 스타일을 파악하는데 사용할 수 있으며, ITS에 있어 학습자 성향 분석 모듈로 고려해볼 수 있다.

  • PDF

An Activity Recognition Algorithm using a Distributed Inference based on the Hidden Markov Model in Wireless Sensor Networks (WSN환경에서 은닉 마코프 모텔 기반의 분산추론 기법 적용한 행위인지 알고리즘)

  • Kim, Hong-Sop;Han, Man-Hyung;Yim, Geo-Su
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.231-236
    • /
    • 2009
  • 본 연구에서는 집이나 사무실과 같은 일상 공간에서 발생할 수 있는 연간의 일상생활행위 (ADL: Activities of Daily Living) 들을 인지하는 분산 모델을 제시한다. 사용자의 환경 정보, 위치 정보 및 행위 정보를 간단한 센서들이 부착된 가정용 기기들과 가구, 식기들을 통해 무선 센서 네트워크를 통해 수집하며 분석한다. 하지만 이와 같은 다양한 기기의 활용과 충분히 분석되어지지 않은 데이터들은 본 논문에서 제시하는 일상 환경에서 고차원의 ADL 모델을 구축하기 어렵게 한다. 그러나 ADL들이 생성하는 센서 데이터들과 센서 데이터들의 순서들은 어떤 행위가, 이루어지고 있는지 인지할 수 있도록 도와준다. 따라서 이 센서 데이터들의 순서를 특정 행위 패턴을 분석하는 데 활용하고, 이를 통해 분산 선형 시간 추론 알고리즘을 제안한다. 이 알고리즘은 센서 네트워크와 같은 소규모 시스템에서 행위를 인지하는 데 적절하다.

  • PDF

A Method for the Classification of Water Pollutants using Machine Learning Model with Swimming Activities Videos of Caenorhabditis elegans (예쁜꼬마선충의 수영 행동 영상과 기계학습 모델을 이용한 수질 오염 물질 구분 방법)

  • Kang, Seung-Ho;Jeong, In-Seon;Lim, Hyeong-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.903-909
    • /
    • 2021
  • Caenorhabditis elegans whose DNA sequence was completely identified is a representative species used in various research fields such as gene functional analysis and animal behavioral research. In the mean time, many researches on the bio-monitoring system to determine whether water is contaminated or not by using the swimming activities of nematodes. In this paper, we show the possibility of using the swimming activities of C. elegans in the development of a machine learning based bio-monitoring system which identifies chemicals that cause water pollution. To characterize swimming activities of nematode, BLS entropy is computed for the nematode in a frame. And, BLS entropy profile, an assembly of entropies, are classified into several patterns using clustering algorithms. Finally these patterns are used to construct data sets. We recorded images of swimming behavior of nematodes in the arenas in which formaldehyde, benzene and toluene were added at a concentration of 0.1 ppm, respectively, and evaluate the performance of the developed HMM.

Performance Analysis of Emergency Communication System of Nuclear Power Plant using Markov Model (마코프 모델을 이용한 원전 비상 통신 시스템 성능 분석)

  • Son, Kwang Seop
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.10-21
    • /
    • 2014
  • In Fukushima accident, when the severe accident such as a natural disaster happens, it is impossible to monitor the plant status due to a extreme environment and station blackout and most I&C systems break downs. Finally, these cause the loss of emergency cooling function and thus results in a hydrogen explosion and radiation leak. In this paper, the emergency response system is introduced that monitors and controls properly when the sever accidents like Fukushima accident happen, And the performance requirements of a wireless communication system used in the emergency respons system is described and the performance of emergency communication system is analyzed using the markov model.

Design and Implementation of a Two-Phase Activity Recognition System Using Smartphone's Accelerometers (스마트폰 내장 가속도 센서를 이용한 2단계 행위 인식 시스템의 설계 및 구현)

  • Kim, Jong-Hwan;Kim, In-Cheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.2
    • /
    • pp.87-92
    • /
    • 2014
  • In this paper, we present a two-phase activity recognition system using smartphone's accelerometers. To consider the unique temporal pattern of accelerometer data for each activity, our system executes the decision-tree(DT) learning in the first phase, and then, in the second phase, executes the hidden Markov model(HMM) learning based on the sequences of classification results of the first phase classifier. Moreover, to build a robust recognizer for each activity, we trained our system using a large amount of data collected from different users, different positions and orientations of smartphone. Through experiments using 6720 examples collected for 6 different indoor activities, our system showed high performance based on its novel design.

Continuous Time Markov Process Model for Nuclide Decay Chain Transport in the Fractured Rock Medium (균열 암반 매질에서의 핵종의 붕괴사슬 이동을 위한 연속시간 마코프 프로세스 모델)

  • Lee, Y.M.;Kang, C.H.;Hahn, P.S.;Park, H.H.;Lee, K.J.
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.539-547
    • /
    • 1993
  • A stochastic approach using continuous time Markov process is presented to model the one-dimensional nuclide transport in fractured rock media as a further extension for previous works[1-3]. Nuclide transport of decay chain of arbitrary length in the single planar fractured rock media in the vicinity of the radioactive waste repository is modeled using a continuous time Markov process. While most of analytical solutions for nuclide transport of decay chain deal with the limited length of decay chain, do not consider the case of having rock matrix diffusion, and have very complicated solution form, the present model offers rather a simplified solution in the form of expectance and its variance resulted from a stochastic modeling. As another deterministic way, even numerical models of decay chain transport, in most cases, show very complicated procedure to get the solution and large discrepancy for the exact solution as opposed to the stochastic model developed in this study. To demonstrate the use of the present model and to verify the model by comparing with the deterministic model, a specific illustration was made for the transport of a chain of three member in single fractured rock medium with constant groundwater flow rate in the fracture, which ignores the rock matrix diffusion and shows good capability to model the fractured media around the repository.

  • PDF

Association Discovery Among Protein Motifs (단백질 모티프간 연관성 탐사)

  • Lee, Hyun-Suk;Lee, Do-Heon;Choi, Deok-Jai
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11c
    • /
    • pp.1827-1830
    • /
    • 2002
  • 단백질 모티프(motif)란 유사한 기능을 가진 여러 단백질 서열에서 공통적으로 발견되는 패턴으로서 단백질의 기능을 예측하는 단서로 활용된다. 현재 Prosite, Pfam 등의 데이터베이스에서 정규식(regular expression), 가중치 행렬(weighted matrix), 은닉 마코프 모델(hidden Markov model)의 형태로 4천여종 이상의 모티프가 등록되어 있다. 본 논문에서는 연관성 탐사 기법을 적용하여 Hits 데이터로부터 상당히 높은 연관성을 갖는 모티프 집단을 밝히고, 실제 자연현상에서 자주 나타나는 연관성을 교차타당성 (cross-validation) 기법을 통해 입증하였다. 이렇게 밝혀진 단백질 모티프간 연관성을 트라이 탐색 기법을 통해 웹으로 제공함으로써 단백질의 기능유추에 쉽게 접근하고자 한다.

  • PDF