• 제목/요약/키워드: 히든 마코프 모델

검색결과 19건 처리시간 0.022초

2단계 은닉 마코프 모델을 이용한 논문 모집 공고의 자동 요약 (An Automatic Summarization of Call-For-Paper Documents Using a 2-Phase hidden Markov Model)

  • 김정현;박성배;이상조;박세영
    • 한국지능시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.243-250
    • /
    • 2008
  • 본 논문에서는 은닉 마코프 모델을 이용하여 논문 모집 공고에서 정보를 추출하는 시스템을 제안한다. 논문 모집 공고는 완전히 정형화된 형식을 가지지는 않지만, 내용의 출현 순서에 따른 흐름이 어느 정도 존재한다. 따라서 순차적인 데이터를 해석하는데 강점을 지닌 은닉 마코프 모델을 논문 모집 공고를 분석하는데 사용한다. 하지만, 논문 모집 공고를 은닉 마코프 모델로 직관적으로 모델링하면 정보 경계가 정확히 인식되지 않는 문제가 발생한다. 본 논문에서는 이 문제를 해결하기 위해 2-단계의 은닉 마코프 모델을 사용한다. 즉, 첫 번째 단계에서, 문서를 구로 모델링한 P-HMM(Phrase hidden Markov model)이 지역적으로 문서를 인식한다. 그리고 두 번째 단계에서 D-HMM(Document hidden Markov model)은 문서가 가진 전체적인 구조와 정보의 흐름을 파악한다. 웹에서 수집된 400개의 논문 모집 공고에 대한 실험 결과, F-measure 성능이 0.49를 보인다. 이는 직관적인 은닉 마코프 모델보다 F-measure로 0.15 정도 향상된 결과이다.

은닉마코프모델을 이용한 이상징후 탐지 기법 (An Anomaly Detection based on Probabilistic Behavior of Hidden Markov Models)

  • 이은영;한찬규;최형기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 춘계학술발표대회
    • /
    • pp.1139-1142
    • /
    • 2008
  • 인터넷의 이용이 증가함에 따라 네트워크를 통한 다양한 공격 역시 증가 추세에 있다. 따라서 네트워크 이상징후를 사전에 탐지하고 상황에 따라 유연하게 대처할 수 있도록 하기 위한 연구가 절실하다. 본 연구는 은닉마코프모델을 이용해 트래픽에서 이상징후를 탐지하는 기법을 제안한다. 제안하는 기법은 시계열 예측 기법을 이용해 트래픽에서 징후를 추출한다. 징후추출 과정의 결과를 은닉마코프모델을 활용한 징후판단과정을 통해 네트워크 이상징후인지를 판단하고 결정한다. 일련의 과정을 perl로 구현하고, 실제 공격이 포함된 트래픽을 사용하여 검증한다. 하지만 결과가 확연히 증명되지는 않는데, 이는 학습과정의 부족과 실제에 가까운 트래픽의 사용으로 인해 나타나는 현상으로 연구의 본질을 흐리지는 않는다고 판단된다. 오히려 실제 상황을 가정했을 때 접근이나 적용을 판단함에 관리자의 의견을 반영할 수 있으므로 공격의 탐지와 판단에 유연성을 증대시킬 수 있다. 본 연구는 실시간 네트워크의 상황 파악이나 네트워크에서의 신종 공격 탐지 및 분류에 응용가능할 것으로 기대된다.

마코프 모델에 기반한 시계열 자료의 모델링 및 예측 (Modeling and Prediction of Time Series Data based on Markov Model)

  • 조영희;이계성
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.225-233
    • /
    • 2011
  • 주식 가격이나 경제 지표, 사회적 현상의 추세나 변화 등은 통상 시간에 따라 변화하기 때문에 시계열 자료로 구분된다. 시계열 자료는 시간 축에 대해 변화하는 자료의 표현 가치뿐 아니라 그 변화 추세나 향후 방향성까지 제시할 수 있다는 점에서 이에 대한 방법론에 대해 많은 연구와 노력이 지속되어 왔다. 본 논문에서는 전통적으로 예측 모형을 구축하여 예측하는 방법을 취하되 그 모형이 복잡하고 정교한 모델을 활용하여 예측 정확도를 높이려는 시도와는 달리 자료 클러스터링 방법과 자료 구간 선정을 통해 예측정확도를 높이려 시도하였다. 기본 모델은 마코프 모델이다. 구간별 유사 구간을 추출하여 모델링하는 구간별 모델링 방법과 클러스터링을 통한 그룹별 모델링을 통해 모델의 예측정확도를 개선하려 시도하였다. 실험을 통해 클러스터링을 거친 그룹별 마코프 모델이 정확도를 개선 시켰으나 예측율은 현저히 떨어지는 결과를 낳았다.

Hidden Markov Model을 이용한 학습자 성향 파악에 관한 연구 (A study for classification of students' learning-styles with HMM)

  • 정영모;이지형;차현진;박선희;윤태복;김용세
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.310-313
    • /
    • 2006
  • 지능형 학습 시스템(ITS, Intelligent Tutoring System)은 학습자의 학습 스타일을 인지하여 학습자에 맞는 학습전략을 세우고 적절한 학습 서비스를 제공하는 시스템이다. 기존의 학습시스템은 학습자의 학습 스타일 보다는 학습 컨텐츠에 중심을 두어 학습자에게 맞는 학습 전략을 적절히 세우는 과정이 부족했다. 이에 본 논문에서는 학습자의 학습과정에서 발생한 데이터를 기반으로 학습자의 학습 스타일을 파악하는 방법을 제안한다. 이를 위해 서양 건축양식 학습을 위한 교육 컨텐츠를 이용하였으며, 수집된 데이터를 분석하여 Folder & Silverman 이 제시한 학습 스타일에 근거한 학습자의 학습 스타일을 추출하였다. 실험에서는 70명의 데이터를 수집하였고, 학습자가 교육 컨텐츠를 학습한 순서에 대한 시계열 데이터를 기반으로 학습자 성향을 알아보기 위하여 은닉 마코프 모델(Hidden Markov Model)을 사용하였다. 은닉 마코프 모델을 적용하여 얻은 분석 결과를 가지고 각 학습자에게 맞는 학습 스타일을 진단하였다. 은닉 마코프 모델에서 얻은 학습 스타일 진단 모델은 향후에 학습자 학습 스타일을 파악하는데 사용할 수 있으며, ITS에 있어 학습자 성향 분석 모듈로 고려해볼 수 있다.

  • PDF

WSN환경에서 은닉 마코프 모텔 기반의 분산추론 기법 적용한 행위인지 알고리즘 (An Activity Recognition Algorithm using a Distributed Inference based on the Hidden Markov Model in Wireless Sensor Networks)

  • 김홍섭;한만형;임거수
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제39차 동계학술발표논문집 16권2호
    • /
    • pp.231-236
    • /
    • 2009
  • 본 연구에서는 집이나 사무실과 같은 일상 공간에서 발생할 수 있는 연간의 일상생활행위 (ADL: Activities of Daily Living) 들을 인지하는 분산 모델을 제시한다. 사용자의 환경 정보, 위치 정보 및 행위 정보를 간단한 센서들이 부착된 가정용 기기들과 가구, 식기들을 통해 무선 센서 네트워크를 통해 수집하며 분석한다. 하지만 이와 같은 다양한 기기의 활용과 충분히 분석되어지지 않은 데이터들은 본 논문에서 제시하는 일상 환경에서 고차원의 ADL 모델을 구축하기 어렵게 한다. 그러나 ADL들이 생성하는 센서 데이터들과 센서 데이터들의 순서들은 어떤 행위가, 이루어지고 있는지 인지할 수 있도록 도와준다. 따라서 이 센서 데이터들의 순서를 특정 행위 패턴을 분석하는 데 활용하고, 이를 통해 분산 선형 시간 추론 알고리즘을 제안한다. 이 알고리즘은 센서 네트워크와 같은 소규모 시스템에서 행위를 인지하는 데 적절하다.

  • PDF

예쁜꼬마선충의 수영 행동 영상과 기계학습 모델을 이용한 수질 오염 물질 구분 방법 (A Method for the Classification of Water Pollutants using Machine Learning Model with Swimming Activities Videos of Caenorhabditis elegans)

  • 강승호;정인선;임형석
    • 한국정보통신학회논문지
    • /
    • 제25권7호
    • /
    • pp.903-909
    • /
    • 2021
  • 예쁜꼬마선충(Caenorhabditis elegans)은 염기서열이 완전히 밝혀진 동물로 유전자 기능 분석, 동물 행동 연구 등 다양한 연구 분야에 사용되는 대표적인 생물 종이다. 그동안 선충을 이용해 물의 오염 여부를 판별하기 위한 바이오 모니터링 시스템에 대한 여러 연구들이 있었다. 본 논문은 하천의 수질 오염의 원인이 되는 화학물질을 식별하기 위해 선충의 수영 행동이 활용 가능한 지를 보여주기 위해 기계학습 기반의 바이오 모니터링 시스템을 제안한다. 선충의 수영 행동을 대표하기 위해 선충을 대상으로 가지 길이 유사성(Branch Length Similarity) 엔트로피를 계산한다. 그리고 BLS 엔트로피의 조합인 BLS 엔트로피 프로파일을 클러스터링 알고리즘을 사용해 몇 가지 패턴으로 유형화하여 데이터 집합을 만든다. 0.1ppm 농도의 포름알데히드, 벤젠, 톨루엔이 첨가된 아레나에서 선충의 수영 행동을 촬영하고 개발한 히든 마코프 모델(Hidden Markov Model: HMM)의 성능을 검증한다.

마코프 모델을 이용한 원전 비상 통신 시스템 성능 분석 (Performance Analysis of Emergency Communication System of Nuclear Power Plant using Markov Model)

  • 손광섭
    • 전자공학회논문지
    • /
    • 제51권3호
    • /
    • pp.10-21
    • /
    • 2014
  • 후쿠시마 원전사고는 자연재해에 의한 중대사고 발생 시 전원공급 중단 및 극한 환경으로 인해 발전소 내부 상황을 정확하게 파악하지 못하였고, 대부분의 계측제어시스템이 그 기능을 제대로 발휘하지 못해 비상냉각기능이 상실되어 수소폭발 및 다량의 방사능이 누출된 사고였다. 본 논문에서는 중대사고 발생 시에도 발전소 내부 상황을 감시하고, 적절히 제어할 수 있는 비상대응시스템에 대하여 소개하고, 비상대응시스템에 사용되는 무선통신망의 성능요구사항에 대해서 논의하고, 요구사항을 만족시킬 수 있는 비상통신망의 성능을 마코프 모델을 이용하여 분석하였다.

스마트폰 내장 가속도 센서를 이용한 2단계 행위 인식 시스템의 설계 및 구현 (Design and Implementation of a Two-Phase Activity Recognition System Using Smartphone's Accelerometers)

  • 김종환;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권2호
    • /
    • pp.87-92
    • /
    • 2014
  • 본 논문에서는 스마트폰 내장 가속도 센서를 이용한 2단계 행위 인식 시스템을 제안한다. 제안하는 행위 인식 시스템에서는 각 행위 별 가속도 데이터의 시간적 변화 패턴을 충분히 반영하기 위해, 1단계에서는 결정트리(DT) 학습을 수행하고, 2단계에서는 1단계 분류 결과들의 시퀀스를 이용하여 은닉 마코프 모델(HMM) 학습을 수행한다. 또한, 견고한 행위 인식기를 얻기 위해, 동일한 행위에 대해 서로 사용자와 서로 다른 스마트폰 위치와 방향으로부터 수집한 다양한 대용량 데이터를 이용하여 본 시스템을 훈련하였다. 6가지 실내 행위들에 대해 수집한 6720개의 가속도 센서 데이터를 이용한 실험을 통해, 본 시스템은 앞서 설명한 설계 방식을 기초로 높은 인식 성능을 보여주었다.

균열 암반 매질에서의 핵종의 붕괴사슬 이동을 위한 연속시간 마코프 프로세스 모델 (Continuous Time Markov Process Model for Nuclide Decay Chain Transport in the Fractured Rock Medium)

  • 이연명;강철형;한필수;박헌휘;이건재
    • Nuclear Engineering and Technology
    • /
    • 제25권4호
    • /
    • pp.539-547
    • /
    • 1993
  • 이전에 제시한 모델 1-3을 다시 확장하여 균열 암반에서의 일차원적 핵종이동에 관한 추계적인 모델을 제시하였다. 이 모델은 처분장 근처의 암반내의 균열을 통한 무한 길이를 갖는 핵종의 붕괴 사슬에 의한 이동을 연속시간 마코프 프로세스를 이용하여 모사한다. 이전의 결정론적 해석해에 의한 모델들이 균일한 다공성매질과 같은 단순성을 요구하고 핵종의 붕괴사슬의 수를 제한하며 균열암반매질내에서의 이동의 경우에는 균열에서 암반으로의 확산등이 고려되지 않거나 그 해의 형태가 복잡하다. 또다른 결정론적인 해를 제시하는 수치모델의 경우에도 해를 얻기 위한 과정이 상당히 복잡하고 정확한 해를 제공하지는 못한다. 이에 반해 이 모델은 매질에서의 핵종의 농도에 관한 기대값과 그 분산으로서 비교적 용이하게 해를 제시한다. 모델을 검증하고 그 효율성가 정착성을 예시하기 위하여 암반으로의 확산이 무시된 단순화된 매질에 대하여 3개의 붕괴 사슬을 갖는 가상의 핵종에 대하여 이동거리와 시간에 대한 농도에 대하여 정확한 해석해와의 비교가 행하여 졌다. 매질을 나눈 구획의 수에 종속 하는 수치분산을 보정하여 계산된 결과에서 이 모델이 해석해와 잘 일치하는 것을 알 수 있었다.

  • PDF

단백질 모티프간 연관성 탐사 (Association Discovery Among Protein Motifs)

  • 이현숙;이도헌;최덕재
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (하)
    • /
    • pp.1827-1830
    • /
    • 2002
  • 단백질 모티프(motif)란 유사한 기능을 가진 여러 단백질 서열에서 공통적으로 발견되는 패턴으로서 단백질의 기능을 예측하는 단서로 활용된다. 현재 Prosite, Pfam 등의 데이터베이스에서 정규식(regular expression), 가중치 행렬(weighted matrix), 은닉 마코프 모델(hidden Markov model)의 형태로 4천여종 이상의 모티프가 등록되어 있다. 본 논문에서는 연관성 탐사 기법을 적용하여 Hits 데이터로부터 상당히 높은 연관성을 갖는 모티프 집단을 밝히고, 실제 자연현상에서 자주 나타나는 연관성을 교차타당성 (cross-validation) 기법을 통해 입증하였다. 이렇게 밝혀진 단백질 모티프간 연관성을 트라이 탐색 기법을 통해 웹으로 제공함으로써 단백질의 기능유추에 쉽게 접근하고자 한다.

  • PDF