본 논문에서는 은닉 마코프 모델을 이용하여 논문 모집 공고에서 정보를 추출하는 시스템을 제안한다. 논문 모집 공고는 완전히 정형화된 형식을 가지지는 않지만, 내용의 출현 순서에 따른 흐름이 어느 정도 존재한다. 따라서 순차적인 데이터를 해석하는데 강점을 지닌 은닉 마코프 모델을 논문 모집 공고를 분석하는데 사용한다. 하지만, 논문 모집 공고를 은닉 마코프 모델로 직관적으로 모델링하면 정보 경계가 정확히 인식되지 않는 문제가 발생한다. 본 논문에서는 이 문제를 해결하기 위해 2-단계의 은닉 마코프 모델을 사용한다. 즉, 첫 번째 단계에서, 문서를 구로 모델링한 P-HMM(Phrase hidden Markov model)이 지역적으로 문서를 인식한다. 그리고 두 번째 단계에서 D-HMM(Document hidden Markov model)은 문서가 가진 전체적인 구조와 정보의 흐름을 파악한다. 웹에서 수집된 400개의 논문 모집 공고에 대한 실험 결과, F-measure 성능이 0.49를 보인다. 이는 직관적인 은닉 마코프 모델보다 F-measure로 0.15 정도 향상된 결과이다.
인터넷의 이용이 증가함에 따라 네트워크를 통한 다양한 공격 역시 증가 추세에 있다. 따라서 네트워크 이상징후를 사전에 탐지하고 상황에 따라 유연하게 대처할 수 있도록 하기 위한 연구가 절실하다. 본 연구는 은닉마코프모델을 이용해 트래픽에서 이상징후를 탐지하는 기법을 제안한다. 제안하는 기법은 시계열 예측 기법을 이용해 트래픽에서 징후를 추출한다. 징후추출 과정의 결과를 은닉마코프모델을 활용한 징후판단과정을 통해 네트워크 이상징후인지를 판단하고 결정한다. 일련의 과정을 perl로 구현하고, 실제 공격이 포함된 트래픽을 사용하여 검증한다. 하지만 결과가 확연히 증명되지는 않는데, 이는 학습과정의 부족과 실제에 가까운 트래픽의 사용으로 인해 나타나는 현상으로 연구의 본질을 흐리지는 않는다고 판단된다. 오히려 실제 상황을 가정했을 때 접근이나 적용을 판단함에 관리자의 의견을 반영할 수 있으므로 공격의 탐지와 판단에 유연성을 증대시킬 수 있다. 본 연구는 실시간 네트워크의 상황 파악이나 네트워크에서의 신종 공격 탐지 및 분류에 응용가능할 것으로 기대된다.
주식 가격이나 경제 지표, 사회적 현상의 추세나 변화 등은 통상 시간에 따라 변화하기 때문에 시계열 자료로 구분된다. 시계열 자료는 시간 축에 대해 변화하는 자료의 표현 가치뿐 아니라 그 변화 추세나 향후 방향성까지 제시할 수 있다는 점에서 이에 대한 방법론에 대해 많은 연구와 노력이 지속되어 왔다. 본 논문에서는 전통적으로 예측 모형을 구축하여 예측하는 방법을 취하되 그 모형이 복잡하고 정교한 모델을 활용하여 예측 정확도를 높이려는 시도와는 달리 자료 클러스터링 방법과 자료 구간 선정을 통해 예측정확도를 높이려 시도하였다. 기본 모델은 마코프 모델이다. 구간별 유사 구간을 추출하여 모델링하는 구간별 모델링 방법과 클러스터링을 통한 그룹별 모델링을 통해 모델의 예측정확도를 개선하려 시도하였다. 실험을 통해 클러스터링을 거친 그룹별 마코프 모델이 정확도를 개선 시켰으나 예측율은 현저히 떨어지는 결과를 낳았다.
지능형 학습 시스템(ITS, Intelligent Tutoring System)은 학습자의 학습 스타일을 인지하여 학습자에 맞는 학습전략을 세우고 적절한 학습 서비스를 제공하는 시스템이다. 기존의 학습시스템은 학습자의 학습 스타일 보다는 학습 컨텐츠에 중심을 두어 학습자에게 맞는 학습 전략을 적절히 세우는 과정이 부족했다. 이에 본 논문에서는 학습자의 학습과정에서 발생한 데이터를 기반으로 학습자의 학습 스타일을 파악하는 방법을 제안한다. 이를 위해 서양 건축양식 학습을 위한 교육 컨텐츠를 이용하였으며, 수집된 데이터를 분석하여 Folder & Silverman 이 제시한 학습 스타일에 근거한 학습자의 학습 스타일을 추출하였다. 실험에서는 70명의 데이터를 수집하였고, 학습자가 교육 컨텐츠를 학습한 순서에 대한 시계열 데이터를 기반으로 학습자 성향을 알아보기 위하여 은닉 마코프 모델(Hidden Markov Model)을 사용하였다. 은닉 마코프 모델을 적용하여 얻은 분석 결과를 가지고 각 학습자에게 맞는 학습 스타일을 진단하였다. 은닉 마코프 모델에서 얻은 학습 스타일 진단 모델은 향후에 학습자 학습 스타일을 파악하는데 사용할 수 있으며, ITS에 있어 학습자 성향 분석 모듈로 고려해볼 수 있다.
본 연구에서는 집이나 사무실과 같은 일상 공간에서 발생할 수 있는 연간의 일상생활행위 (ADL: Activities of Daily Living) 들을 인지하는 분산 모델을 제시한다. 사용자의 환경 정보, 위치 정보 및 행위 정보를 간단한 센서들이 부착된 가정용 기기들과 가구, 식기들을 통해 무선 센서 네트워크를 통해 수집하며 분석한다. 하지만 이와 같은 다양한 기기의 활용과 충분히 분석되어지지 않은 데이터들은 본 논문에서 제시하는 일상 환경에서 고차원의 ADL 모델을 구축하기 어렵게 한다. 그러나 ADL들이 생성하는 센서 데이터들과 센서 데이터들의 순서들은 어떤 행위가, 이루어지고 있는지 인지할 수 있도록 도와준다. 따라서 이 센서 데이터들의 순서를 특정 행위 패턴을 분석하는 데 활용하고, 이를 통해 분산 선형 시간 추론 알고리즘을 제안한다. 이 알고리즘은 센서 네트워크와 같은 소규모 시스템에서 행위를 인지하는 데 적절하다.
예쁜꼬마선충(Caenorhabditis elegans)은 염기서열이 완전히 밝혀진 동물로 유전자 기능 분석, 동물 행동 연구 등 다양한 연구 분야에 사용되는 대표적인 생물 종이다. 그동안 선충을 이용해 물의 오염 여부를 판별하기 위한 바이오 모니터링 시스템에 대한 여러 연구들이 있었다. 본 논문은 하천의 수질 오염의 원인이 되는 화학물질을 식별하기 위해 선충의 수영 행동이 활용 가능한 지를 보여주기 위해 기계학습 기반의 바이오 모니터링 시스템을 제안한다. 선충의 수영 행동을 대표하기 위해 선충을 대상으로 가지 길이 유사성(Branch Length Similarity) 엔트로피를 계산한다. 그리고 BLS 엔트로피의 조합인 BLS 엔트로피 프로파일을 클러스터링 알고리즘을 사용해 몇 가지 패턴으로 유형화하여 데이터 집합을 만든다. 0.1ppm 농도의 포름알데히드, 벤젠, 톨루엔이 첨가된 아레나에서 선충의 수영 행동을 촬영하고 개발한 히든 마코프 모델(Hidden Markov Model: HMM)의 성능을 검증한다.
후쿠시마 원전사고는 자연재해에 의한 중대사고 발생 시 전원공급 중단 및 극한 환경으로 인해 발전소 내부 상황을 정확하게 파악하지 못하였고, 대부분의 계측제어시스템이 그 기능을 제대로 발휘하지 못해 비상냉각기능이 상실되어 수소폭발 및 다량의 방사능이 누출된 사고였다. 본 논문에서는 중대사고 발생 시에도 발전소 내부 상황을 감시하고, 적절히 제어할 수 있는 비상대응시스템에 대하여 소개하고, 비상대응시스템에 사용되는 무선통신망의 성능요구사항에 대해서 논의하고, 요구사항을 만족시킬 수 있는 비상통신망의 성능을 마코프 모델을 이용하여 분석하였다.
본 논문에서는 스마트폰 내장 가속도 센서를 이용한 2단계 행위 인식 시스템을 제안한다. 제안하는 행위 인식 시스템에서는 각 행위 별 가속도 데이터의 시간적 변화 패턴을 충분히 반영하기 위해, 1단계에서는 결정트리(DT) 학습을 수행하고, 2단계에서는 1단계 분류 결과들의 시퀀스를 이용하여 은닉 마코프 모델(HMM) 학습을 수행한다. 또한, 견고한 행위 인식기를 얻기 위해, 동일한 행위에 대해 서로 사용자와 서로 다른 스마트폰 위치와 방향으로부터 수집한 다양한 대용량 데이터를 이용하여 본 시스템을 훈련하였다. 6가지 실내 행위들에 대해 수집한 6720개의 가속도 센서 데이터를 이용한 실험을 통해, 본 시스템은 앞서 설명한 설계 방식을 기초로 높은 인식 성능을 보여주었다.
이전에 제시한 모델 1-3을 다시 확장하여 균열 암반에서의 일차원적 핵종이동에 관한 추계적인 모델을 제시하였다. 이 모델은 처분장 근처의 암반내의 균열을 통한 무한 길이를 갖는 핵종의 붕괴 사슬에 의한 이동을 연속시간 마코프 프로세스를 이용하여 모사한다. 이전의 결정론적 해석해에 의한 모델들이 균일한 다공성매질과 같은 단순성을 요구하고 핵종의 붕괴사슬의 수를 제한하며 균열암반매질내에서의 이동의 경우에는 균열에서 암반으로의 확산등이 고려되지 않거나 그 해의 형태가 복잡하다. 또다른 결정론적인 해를 제시하는 수치모델의 경우에도 해를 얻기 위한 과정이 상당히 복잡하고 정확한 해를 제공하지는 못한다. 이에 반해 이 모델은 매질에서의 핵종의 농도에 관한 기대값과 그 분산으로서 비교적 용이하게 해를 제시한다. 모델을 검증하고 그 효율성가 정착성을 예시하기 위하여 암반으로의 확산이 무시된 단순화된 매질에 대하여 3개의 붕괴 사슬을 갖는 가상의 핵종에 대하여 이동거리와 시간에 대한 농도에 대하여 정확한 해석해와의 비교가 행하여 졌다. 매질을 나눈 구획의 수에 종속 하는 수치분산을 보정하여 계산된 결과에서 이 모델이 해석해와 잘 일치하는 것을 알 수 있었다.
단백질 모티프(motif)란 유사한 기능을 가진 여러 단백질 서열에서 공통적으로 발견되는 패턴으로서 단백질의 기능을 예측하는 단서로 활용된다. 현재 Prosite, Pfam 등의 데이터베이스에서 정규식(regular expression), 가중치 행렬(weighted matrix), 은닉 마코프 모델(hidden Markov model)의 형태로 4천여종 이상의 모티프가 등록되어 있다. 본 논문에서는 연관성 탐사 기법을 적용하여 Hits 데이터로부터 상당히 높은 연관성을 갖는 모티프 집단을 밝히고, 실제 자연현상에서 자주 나타나는 연관성을 교차타당성 (cross-validation) 기법을 통해 입증하였다. 이렇게 밝혀진 단백질 모티프간 연관성을 트라이 탐색 기법을 통해 웹으로 제공함으로써 단백질의 기능유추에 쉽게 접근하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.