협업 필터링은 사회적 추천 방식으로서 뛰어난 성능을 제공하는 대표적인 추천 시스템 알고리즘으로 폭넓게 사용되어 오고 있다. 협업 필터링은 구조적으로 아이템 평가 데이터에 의존하고 있기 때문에 평가 행렬의 희박도는 추천 성능에 직접적으로 영향을 미친다. 평가 행렬의 희박성 문제 개선을 위해 협업 필터링과 내용 기반 방법을 결합하는 복합형 추천 방법에 대한 연구는 꾸준하게 이루어져 왔으며, 본 연구에서는 협업 필터링의 희소 평가 행렬(sparse rating matrix) 문제 개선 방안의 하나로 공통 평가 아이템이 누락되어 유사도 측정이 불가능한 상황에 대처하기 위한 방법을 제안한다. 이를 위하여 사용자간 이행적 관계 그래프에 기반하는 유사도 평가 모델을 설계하고 오픈 데이터셋인 Movielens에 적용하여 추천 정확도를 측정 비교하였다.
인간의 시각은 색순응을 통해서 사물의 색을 광원의 색에 영향 없이 인지 할 수 있다. 반면에, 카메라는 입력 값을 그대로 기록하기 때문에, 광원에 따라 물체의 색이 다르게 나타난다. 최근에 희박성 제약조건의 비음수 행렬 분해(nonnegative matrix factorization with sparseness constraint; NMFsc)를 이용한 광원추정 방법이 제안되었다. 이 방법은 낮은 희박성 제약조건을 사용해서 광원을 추정하고, 높은 희박성 제약조건을 사용해서 반사율을 추정한다. 하지만, 희박성 제약조건의 비음수 행렬분해를 이용한 광원 추정 방법은, 영상의 전역적인 정보를 사용하므로, 영상에서 동일한 색이 넓은 영역에 존재하는 경우, 추정된 광원이 큰 오차를 가진다. 이러한 단점을 보완하기 위해, 영상에서 주색도 분석과 희박성 제약조건의 비음수 행렬 분해를 이용한 광원 추정 방법을 제안하였다. 먼저 주색도를 분석하기 위해 영상을 색도 좌표계로 옮기고 색도 히스토그램을 이용하여 유사한 색도를 가지는 영역들로 영상을 분할한다. 다음으로 영상의 주색도는 분할된 영상들 중 색도의 표준편차가 가장 적은 영상의 색도로 선택한다. 마지막으로 주색도 분석 결과와 희박성 제약조건의 비음수 행렬 분해를 이용해 입력 영상에서 주색도 성분을 제거하고 최종적인 광원을 추정한다. 실제 촬영 영상에 대한 평균 각오차를 사용하여 기존의 방법과의 성능을 비교하였고, 그 결과 제안하는 방법의 평균 각 오차는 5.5를 나타내어 영상의 주 색도를 포함하여 광원을 추정한 기존 방법의 평균 각 오차 5.7 보다 우수한 성능을 나타내었다.
협업 필터링 추천은 사용자의 아이템에 대한 선호도를 기반으로 유사 아이템 집합 또는 유사 사용자 집합을 생성하고 이를 이용해 사용자의 특정 아이템에 대한 선호도를 예측한다. 따라서 선호도 행렬이 희박할 경우, 추천의 신뢰도는 급격히 낮아진다. 본 논문에서는 위 문제를 해결하기 위해 데이터 신뢰도 기반 가중치를 이용한 하이브리드 선호도 예측 기법을 제안한다. 선호도 예측은 유사 아이템 집합과 유사 사용자 집합을 모두 생성하고 각 집합을 통해 사용자의 선호도를 예측하며, 모델의 상황을 반영한 가중치를 이용해 각 예측치를 병합하여 수행된다. 이 기법은 사용자 선호도 예측 정확도를 높이며 선호도 행렬 희박도가 높은 상황에도 추천 서비스의 신뢰도를 유지할 수 있도록 한다. 이 기법을 바탕으로 추천 시스템을 구현하고 절대평균오차를 기준으로 서비스 신뢰도 향상을 측정하였다. 실험에서 본 기법은 Hao Ji가 제안한 기존의 기법에 비해 선호도 행렬 희박도가 84% 이상인 상황에서 평균 21.7%의 성능 향상을 보여 효과적으로 행렬 희박도 문제를 해소할 수 있음을 검증하였다.
이 논문은 대규모인 약 2,000점(미지수 약 4,000개)의 평면 측지망을 조정할 수 있는 프로그램을 개발하는데 목적이 있다. 데이터의 저장 및 관리에는 희박행렬(sparse matrix)의 기법이 사용되었으며, 관측방정식에는 RR(C)U (Row-Wise Representation Complete Unodered)방식, 정규방정식에는 RR(U)U(Row-Wise Representation Upper Unodered) 방식을 도입하고 해법에는 수정 Cholesky법을 적용하였다. PC 386에서 개발된 이 프로그램은 정밀 2차 기준점망인 테스트망에 적용되었으며, 2차원 배열을 사용한 Cholesky 분해법 및 직교분해법을 채용한 프로그램과의 상대적인 비교분석이 이루어졌다. 연구의 결과에서는 희박행렬의 기법이 기억용량의 면에서 뿐만 아니라 처리시간에 있어서도 극히 효과적인 기법임을 보여주고 있다.
연속 수축 사전분포는 spike and slab 사전분포와 더불어, 희박 회귀계수 벡터 또는 공분산 행렬에 대한 베이지안 추론을 위해 널리 사용되고 있다. 특히 고차원 상황에서, 연속 수축 사전분포는 spike and slab 사전분포에 비해 매우 작은 모수공간을 가짐으로써 계산적인 이점을 가진다. 하지만 연속 수축 사전분포는 정확히 0인 값을 생성하지 않기 때문에, 이를 이용한 변수 선택이 자연스럽지 않다는 문제가 있다. 비록 연속 수축 사전분포에 기반한 변수 선택 방법들이 개발되어 있기는 하지만, 이들에 대한 포괄적인 비교연구는 거의 진행되어 있지 않다. 본 논문에서는, 연속 수축 사전분포에 기반한 두 가지의 변수 선택 방법들을 비교하려 한다. 첫 번째 방법은 신용구간에 기반한 변수 선택, 두 번째 방법은 최근 Li와 Pati (2017)가 개발한 sequential 2-means 알고리듬이다. 두 방법에 대한 간략한 소개를 한 뒤, 다양한 모의실험 상황에서 자료를 생성하여 두 방법들의 성능을 비교하였다. 끝으로, 모의실험으로부터 발견한 몇 가지 사실들을 기술하고, 이로부터 몇 가지 제안을 하며 논문을 마치려 한다.
추천 시스템은 고객의 데이터를 이용하여 개인 맞춤화된 상품을 추천한다. 추천 시스템은 협업 필터링, 콘텐츠 기반 필터링 그리고 이 두 가지를 합친 하이브리드 방법의 세 가지로 크게 나누어진다. 이 연구에서는 딥러닝 방법론에 기초한 오토인코더를 이용한 추천 시스템에 대한 소개와 그 모형들의 비교 연구를 진행한다. 오토인코더는 데이터 행렬에 0이 많은 경우의 문제를 효과적으로 다룰 수 있는 딥러닝 기반의 비지도학습 모형이다. 이 연구에서는 세 개의 실제 데이터를 이용하여 다섯 가지 종류의 오토인코더 기반 모형들을 비교한다. 처음의 세 개 모형은 협업 필터링에 속한 모형이고 나머지 두 개의 모형은 하이브리드 모형이다. 실제 데이터는 고객의 평점 데이터이고, 대부분의 평점이 없어서 희박성 비율이 높다는 특징이 있다.
협력적 여과 시스템은 {사용자-문서}의 행렬을 기반으로 사용자에게 웹 문서를 추천하는 데 있어서 효율적인 시스템이다. 그러나 협력적 여과 시스템은 초기 평가 문제와 희박성으로 인하여 추천의 정확도가 저하된다는 단점을 갖는다. 본 논문에서는 협력적 여과 시스템의 희박성과 초기 평가 문제를 해결하기 위하여 사용자 프로파일을 생성시킴으로써 자동으로 선호도를 평가하는 방법을 제안한다. 본 논문에서 사용하는 프로파일은 협력적 여과 시스템에서의 {사용자-문서} 행렬을 기반으로 생성된 사용자 프로파일에 내용 기반 여과 시스템에서 연관 피드백을 이용하여 생성한 사용자 프로파일을 상호정보의 방법에 의해 병합함으로써 생성한 내용 기반 협력적 사용자 프로파일이다. 생성한 내용 기반 협력적 사용자 프로파일을 정규화시키고, 정규화한 프로파일을 협력적 여과 시스템의 {사용자-문서} 행렬에 반영함으로써 자동으로 선호도를 평가한다. 제안된 방법은 사용자가 웹 문서에 대해서 선호도를 평가한 데이터베이스에서 평가되었으며, 기존의 방법보다 보다 효율적임을 증명한다.
협력적 여과는 사용자 선호도를 예측하기 위해 그 사용자의 유형을 학습하는 데 목적을 둔 기술이다. 협력적 여과 시스템이 전자상거래에서 성공적인 기술일지라도 그들은 데이터의 고차원성과 희박성이라는 문제점을 갖는다. 본 논문에서는 이와 같은 문제점을 해결하기 위하여 비부정 행렬 인수분해(NNMF, Non-negative Matrix Factorization) 방법을 이용한 최근 인접 협력적 여과 방법을 제안한다. 행렬을 분해하기 위한 전처리로서 사용자 변동 계수를 이용하여 사용자-아이템 행렬의 결측치를 채우고, 이를 대상으로 비부정 분해 방식을 적용하여 행렬을 인수분해 한다. 비부정 분해 방식을 적용한 긍정 분해는 사용자들을 의미를 갖는 벡터로써 표현함으로써 사용자들을 의미 관계를 갖는 그룹으로 표현한다. 이와 같이 벡터로 표현된 사용자들은 벡터 유사도에 의해 그들간의 유사도를 계산한다. 계산된 유사도의 정도에 의해 이웃을 결정하고, 이웃들이 평가한 아이템에 대한 흥미도를 기반으로 새로운 사용자가 평가하지 않은 아이템에 대한 결측치를 예측한다.
Journal of the Korean Data and Information Science Society
/
제27권2호
/
pp.381-394
/
2016
그래피컬 모형은 변수들 사이의 조건부 종속성을 노드와 연결선을 통하여 그래프로 나타낸다. 변수들 사이의 복잡한 연관성을 표현하기 위하여 그래피컬 모형은 물리학, 경제학, 생물학을 포함하여 다양한 분야에 적용되고 있다. 조건부 종속성은 공분산 행렬의 역행렬의 비대각 성분이 0인 것과 대응하는 두 변수의 조건부 독립이 동치임에 기반하여 공분산 행렬의 역행렬로부터 추정될 수 있다. 본 논문은 공분산 행렬의 역행렬을 희박하게 추정하는 유사가능도 기반의 CONCORD (convex correlation selection method) 방법에 대하여 기존의 BCD (block coordinate descent) 알고리즘을 랜덤 치환을 활용한 갱신 규칙과 그래픽 처리 장치 (graphics processing unit)의 병렬 연산을 활용하여 고차원 자료에 대하여 보다 효율적인 BCDR (block coordinate descent with random permutation) 알고리즘을 제안하였다. 두 종류의 네트워크 구조를 고려한 모의실험에서 제안하는 알고리즘의 효율성을 수렴까지의 계산 시간을 비교하여 확인하였다.
다변량 경시적 자료 분석은 반복 측정된 자료에 존재하는 상관관계를 올바르게 추정하면서 자료를 분석해야 한다. 경시적 연구에서는 다변량 경시적 자료가 주로 생성되지만, 기존 통계적 모형은 대부분 단변량으로 분석되어 다변량 경시적 자료에 존재하는 복잡한 상관관계를 제대로 설명하지 못하게 된다. 따라서 본 논문에서는 복잡한 상관관계를 설명하기 위해 공분산 행렬을 모형화하는 다양한 방법에 대해 고찰한다. 그 중 수정된 콜레스키 분해, 수정된 콜레스키 블록분해와 초구분해를 살펴본다. 그리고 일반화 자기회귀모수 행렬이 가지는 희박성 문제를 해결하기 위해 베이지안 방법을 이용하여 청소년 패널 데이터를 분석한다. 청소년 패널 데이터는 다변량 경시적 자료이며, 반응 변수로는 학교 적응도, 학업 성취도, 휴대전화 의존도를 고려한다. 자기 상관 구조와 혁신 표준 편차 구조를 달리 가정하여 여러 모형을 비교한다. 가장 적합한 모형에 대해 학교 적응도와 학업 성취도에 대해 모든 설명 변수가 유의미하며, 휴대전화 의존도가 반응 변수일 때 사교육 시간을 제외한 모든 설명 변수가 유의미한 것으로 나타난다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.