• Title/Summary/Keyword: 희박 행렬

Search Result 17, Processing Time 0.017 seconds

Transitive Similarity Evaluation Model for Improving Sparsity in Collaborative Filtering (협업필터링의 희박 행렬 문제를 위한 이행적 유사도 평가 모델)

  • Bae, Eun-Young;Yu, Seok-Jong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.109-114
    • /
    • 2018
  • Collaborative filtering has been widely utilized in recommender systems as typical algorithm for outstanding performance. Since it depends on item rating history structurally, The more sparse rating matrix is, the lower its recommendation accuracy is, and sometimes it is totally useless. Variety of hybrid approaches have tried to combine collaborative filtering and content-based method for improving the sparsity issue in rating matrix. In this study, a new method is suggested for the same purpose, but with different perspective, it deals with no-match situation in person-person similarity evaluation. This method is called the transitive similarity model because it is based on relation graph of people, and it compares recommendation accuracy by applying to Movielens open dataset.

Illumination Estimation Based on Nonnegative Matrix Factorization with Dominant Chromaticity Analysis (주색도 분석을 적용한 비음수 행렬 분해 기반의 광원 추정)

  • Lee, Ji-Heon;Kim, Dae-Chul;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.89-96
    • /
    • 2015
  • Human visual system has chromatic adaptation to determine the color of an object regardless of illumination, whereas digital camera records illumination and reflectance together, giving the color appearance of the scene varied under different illumination. NMFsc(nonnegative matrix factorization with sparseness constraint) was recently introduced to estimate original object color by using sparseness constraint. In NMFsc, low sparseness constraint is used to estimate illumination and high sparseness constraint is used to estimate reflectance. However, NMFsc has an illumination estimation error for images with large uniform area, which is considered as dominant chromaticity. To overcome the defects of NMFsc, illumination estimation via nonnegative matrix factorization with dominant chromaticity image is proposed. First, image is converted to chromaticity color space and analyzed by chromaticity histogram. Chromaticity histogram segments the original image into similar chromaticity images. A segmented region with the lowest standard deviation is determined as dominant chromaticity region. Next, dominant chromaticity is removed in the original image. Then, illumination estimation using nonnegative matrix factorization is performed on the image without dominant chromaticity. To evaluate the proposed method, experimental results are analyzed by average angular error in the real world dataset and it has shown that the proposed method with 5.5 average angular error achieve better illuminant estimation over the previous method with 5.7 average angular error.

Hybrid Preference Prediction Technique Using Weighting based Data Reliability for Collaborative Filtering Recommendation System (협업 필터링 추천 시스템을 위한 데이터 신뢰도 기반 가중치를 이용한 하이브리드 선호도 예측 기법)

  • Lee, O-Joun;Baek, Yeong-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.5
    • /
    • pp.61-69
    • /
    • 2014
  • Collaborative filtering recommendation creates similar item subset or similar user subset based on user preference about items and predict user preference to particular item by using them. Thus, if preference matrix has low density, reliability of recommendation will be sharply decreased. To solve these problems we suggest Hybrid Preference Prediction Technique Using Weighting based Data Reliability. Preference prediction is carried out by creating similar item subset and similar user subset and predicting user preference by each subset and merging each predictive value by weighting point applying model condition. According to this technique, we can increase accuracy of user preference prediction and implement recommendation system which can provide highly reliable recommendation when density of preference matrix is low. Efficiency of this system is verified by Mean Absolute Error. Proposed technique shows average 21.7% improvement than Hao Ji's technique when preference matrix sparsity is more than 84% through experiment.

Adjustment Program for Large Sparse Geodetic Networks (희박행렬의 기법을 이용한 대규모 측지망의 조정)

  • Lee, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.143-150
    • /
    • 1991
  • This paper presents an overview of a system of computer programs for the solution of a large geodetic network of about 2,000 stations. The system arranges the matrices in systematic sparse form which is applied to observation equations of RR(C)U (Row-wise Representation Complete Unordered) type and to normal equations of RR(U)U (Row-wise Representation Upper Unordered) type. The solution is done by a Modified Cholesky's algorithm in view of large networks. The implementation program are tested in PC-386 by korean new secondary networks, the results show that the sparse techniques are highly useful to geodetic networks in core-storage management and processing time.

  • PDF

A comparison study of Bayesian variable selection methods for sparse covariance matrices (희박 공분산 행렬에 대한 베이지안 변수 선택 방법론 비교 연구)

  • Kim, Bongsu;Lee, Kyoungjae
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.2
    • /
    • pp.285-298
    • /
    • 2022
  • Continuous shrinkage priors, as well as spike and slab priors, have been widely employed for Bayesian inference about sparse regression coefficient vectors or covariance matrices. Continuous shrinkage priors provide computational advantages over spike and slab priors since their model space is substantially smaller. This is especially true in high-dimensional settings. However, variable selection based on continuous shrinkage priors is not straightforward because they do not give exactly zero values. Although few variable selection approaches based on continuous shrinkage priors have been proposed, no substantial comparative investigations of their performance have been conducted. In this paper, We compare two variable selection methods: a credible interval method and the sequential 2-means algorithm (Li and Pati, 2017). Various simulation scenarios are used to demonstrate the practical performances of the methods. We conclude the paper by presenting some observations and conjectures based on the simulation findings.

Comparison of deep learning-based autoencoders for recommender systems (오토인코더를 이용한 딥러닝 기반 추천시스템 모형의 비교 연구)

  • Lee, Hyo Jin;Jung, Yoonsuh
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.329-345
    • /
    • 2021
  • Recommender systems use data from customers to suggest personalized products. The recommender systems can be categorized into three cases; collaborative filtering, contents-based filtering, and hybrid recommender system that combines the first two filtering methods. In this work, we introduce and compare deep learning-based recommender system using autoencoder. Autoencoder is an unsupervised deep learning that can effective solve the problem of sparsity in the data matrix. Five versions of autoencoder-based deep learning models are compared via three real data sets. The first three methods are collaborative filtering and the others are hybrid methods. The data sets are composed of customers' ratings having integer values from one to five. The three data sets are sparse data matrix with many zeroes due to non-responses.

Automatic Preference Rating using User Profile in Content-based Collaborative Filtering System (내용 기반 협력적 여과 시스템에서 사용자 프로파일을 이용한 자동 선호도 평가)

  • 고수정;최성용;임기욱;이정현
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.1062-1072
    • /
    • 2004
  • Collaborative filtering systems based on {user-document} matrix are effective in recommending web documents to user. But they have a shortcoming of decreasing the accuracy of recommendations by the first rater problem and the sparsity. This paper proposes the automatic preference rating method that generates user profile to solve the shortcoming. The profile in this paper is content-based collaborative user profile. The content-based collaborative user profile is generated by combining a content-based user profile with a collaborative user profile by mutual information method. Collaborative user profile is based on {user-document} matrix in collaborative filtering system, thus, content-based user profile is generated by relevance feedback in content-based filtering systems. After normalizing combined content-based collaborative user profiles, it automatically rates user preference by reflecting normalized profile in {user-document}matrix of collaborative filtering systems. We evaluated our method on a large database of user ratings for web document and it was certified that was more efficient than existent methods.

Nearest-Neighbor Collaborative Filtering Using Dimensionality Reduction by Non-negative Matrix Factorization (비부정 행렬 인수분해 차원 감소를 이용한 최근 인접 협력적 여과)

  • Ko, Su-Jeong
    • The KIPS Transactions:PartB
    • /
    • v.13B no.6 s.109
    • /
    • pp.625-632
    • /
    • 2006
  • Collaborative filtering is a technology that aims at teaming predictive models of user preferences. Collaborative filtering systems have succeeded in Ecommerce market but they have shortcomings of high dimensionality and sparsity. In this paper we propose the nearest neighbor collaborative filtering method using non-negative matrix factorization(NNMF). We replace the missing values in the user-item matrix by using the user variance coefficient method as preprocessing for matrix decomposition and apply non-negative factorization to the matrix. The positive decomposition method using the non-negative decomposition represents users as semantic vectors and classifies the users into groups based on semantic relations. We compute the similarity between users by using vector similarity and selects the nearest neighbors based on the similarity. We predict the missing values of items that didn't rate by a new user based on the values that the nearest neighbors rated items.

BCDR algorithm for network estimation based on pseudo-likelihood with parallelization using GPU (유사가능도 기반의 네트워크 추정 모형에 대한 GPU 병렬화 BCDR 알고리즘)

  • Kim, Byungsoo;Yu, Donghyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.381-394
    • /
    • 2016
  • Graphical model represents conditional dependencies between variables as a graph with nodes and edges. It is widely used in various fields including physics, economics, and biology to describe complex association. Conditional dependencies can be estimated from a inverse covariance matrix, where zero off-diagonal elements denote conditional independence of corresponding variables. This paper proposes a efficient BCDR (block coordinate descent with random permutation) algorithm using graphics processing units and random permutation for the CONCORD (convex correlation selection method) based on the BCD (block coordinate descent) algorithm, which estimates a inverse covariance matrix based on pseudo-likelihood. We conduct numerical studies for two network structures to demonstrate the efficiency of the proposed algorithm for the CONCORD in terms of computation times.

KCYP data analysis using Bayesian multivariate linear model (베이지안 다변량 선형 모형을 이용한 청소년 패널 데이터 분석)

  • Insun, Lee;Keunbaik, Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.6
    • /
    • pp.703-724
    • /
    • 2022
  • Although longitudinal studies mainly produce multivariate longitudinal data, most of existing statistical models analyze univariate longitudinal data and there is a limitation to explain complex correlations properly. Therefore, this paper describes various methods of modeling the covariance matrix to explain the complex correlations. Among them, modified Cholesky decomposition, modified Cholesky block decomposition, and hypersphere decomposition are reviewed. In this paper, we review these methods and analyze Korean children and youth panel (KCYP) data are analyzed using the Bayesian method. The KCYP data are multivariate longitudinal data that have response variables: School adaptation, academic achievement, and dependence on mobile phones. Assuming that the correlation structure and the innovation standard deviation structure are different, several models are compared. For the most suitable model, all explanatory variables are significant for school adaptation, and academic achievement and only household income appears as insignificant variables when cell phone dependence is a response variable.