• Title/Summary/Keyword: 희박 예혼합연소

Search Result 74, Processing Time 0.02 seconds

Linear Stability Analysis in a Gas Turbine Combustor Using Thermoacoustic Models (열음향 해석 모델을 통한 가스터빈 연소기에서의 선형 안정성 분석)

  • Kim, Daesik
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.2
    • /
    • pp.17-23
    • /
    • 2012
  • In this study, thermoacoustic analysis model was developed in order to predict both eigenfrequencies and initial growth rate of combustion instabilities for lean premixed gas turbine combustors. As a first step, a model combustor and nozzle were selected and analytical linear equations for thermoacoustic waves were derived for a given combustion system. Then, methods showing how the equations can be used for analysis of the combustion instability were suggested. It was found that the prediction results showed a good agreement with the measurements. However, there were some limitation in growth rate predictions, which were related with over-simplification of flame structure, acoustic boundary conditions, and temperature distribution in the combustor.

The Low-NOx Characteristics of Premixed Lean-Burn Gas Turbine Combustor (예혼합 희박연소 가스터빈 연소기의 저 NOx 특성)

  • Pae, H.S.;Ahn, K.Y.;Park, J.I.;Ahn, J.H.;Kim, Y.M.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.201-207
    • /
    • 1999
  • The combustion characteristics for the low NOx 50 kW-class gas turbine combustor have been experimentally investigated. In order to achieve the premixing and the lean burn combustion, the geometries of the primary zone including premixed chamber were modified from conventional combustor. The centerline profiles of CO and NO concentration, and temperature were measured for the premixed combustors with or without dilution holes in the liner. The effects of the pilot fuel injection rate and air dilution on flame stabilization and pollutant (CO, NO) emission are discussed in detail.

  • PDF

An Experimental Study on Combustion Instability Characteristics of Various Fuel-Air Mixing Section Geometry in a Model Dump Shape Combustor (모형 덤프 연소기에서 혼합기 유입구 길이 변화에 따른 연소불안정 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Yoon, Ji-Su;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.187-199
    • /
    • 2011
  • The main objective of this study was investigation of natural gas flames in a lean premixed swirl-stabilized dump combustor with an attention focused on the effect of the various fuel-air mixing section geometry on the combustion instability characteristics. The multi-channel dynamic pressure transducers were located on the combustor and inlet mixing section region to observe combustion pressure oscillation and difference phase at each dynamic pressure measurement results. Dynamic pressures were also measured to investigate characteristics of combustion at the same time. The combustor and mixing section length was varied in order to have different acoustic resonance characteristics from 800 to 1800 mm in combustor and 470, 550, 870 mm in mixing section. We observed two dominant instability frequencies in this study. Lower frequencies were obtained at lower equivalence ratio region and it was associated with a fundamental longitudinal mode of combustor length. Higher frequencies were observed in higher equivalence ratio conditions. It was related to secondary longitudinal mode of coupled with the combustor and mixing section. In this instability characteristics, pressure oscillation of mixing section part was larger than pressure oscillation of combustor. As a result, combustion instability was strongly affected by acoustic characteristics of combustor and mixing section geometry.

  • PDF

An Experimental Study on Combustion Instability Characteristics of Various Fuel-Air Mixing Section Geometry in a Model Dump Shape Combustor (모형 덤프 연소기에서 혼합기 유입구 길이 변화에 따른 연소불안정 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Yoon, Ji-Su;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.57-69
    • /
    • 2012
  • The main objective of this study was investigation of natural gas flames in a lean premixed swirl-stabilized dump combustor with an attention focused on the effect of the various fuel-air mixing section geometry on the combustion instability characteristics. The combustor and mixing section length was varied in order to have different acoustic resonance characteristics from 800 to 1800 mm in combustor and 470, 550, 870 mm in mixing section. We observed two dominant instability frequencies in this study. Lower frequencies were associated with a fundamental longitudinal mode of combustor length. Higher frequencies were related to secondary longitudinal mode of coupled with the combustor and mixing section. As a result, combustion instability was strongly affected by acoustic characteristics of combustor and mixing section geometry.

A Study on Combustion Characteristics and Flow Analysis of a Lean Premixed Flame in Lab-Scale Gas Turbine Combustor (모형 가스터빈 연소기에서 희박 예혼합 화염의 연소 특성 및 유동 해석에 관한 연구)

  • Ryu, Hye-Yeon;Kim, Gyu-Bo;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.574-581
    • /
    • 2008
  • The characteristics of combustion and flow for a lean premixed flame in lab-scale gas turbine combustor was studied through experiment and numerical analysis. From the experiment, flame structure and heat release rate were obtained from OH emission spectroscopy. Qualitative comparisons were made line-integrated OH chemiluminescence image and abel-transformed one. NOx analyzer was implemented to get the characteristic of NOx exhaust from the combustor. From the numerical analysis, the thermal distribution and characteristic of recirculation zone with the change of fuel-air mixing degree, the characteristic of methane distribution with equivalence ratio in the combustor respectively. Total heat release rate is increased with increasing equivalence ratio. Thermal Nox is reduced with increasing fuel-air mixing degree. Increasing equivalence ratio results in the decrease of the size of reaction zone and alteration of the position of the reaction zone into the entrance of the combustor.

Effect of Mixing Section Resonance Mode on Dynamic Combustion Characteristics in a Swirl-Stabilized Combustor (스월-안정화 연소기에서 혼합기 공진모드가 동적 연소특성에 미치는 영향)

  • Han, Sunwoo;Lee, Shinwoo;Hwang, Donghyun;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.27 no.1
    • /
    • pp.18-25
    • /
    • 2022
  • Hot-firing tests were performed to experimentally confirm the effect of the eigenmode in the fuel-air mixing section on combustion instability by changing mixing section length, inlet mean velocity, equivalence ratio, and swirler geometry. A premixed gas composed of air and ethylene was supplied to the combustion chamber through an mixing section and an axial swirler. As the mixing section length increased, the inlet velocity perturbation decreased, but the combustion instability increased more. It was found that the resonance frequency of the first longitudinal mode in the mixing section shifted to the third longitudinal mode as the length of the mixing section increased. The results implied that the transition of the resonace frquency by changing the length of the mixing section might cause combustion instability.

Combustion Instability Analysis Using Network Model in an Annular Gas Turbine Combustor (네트워크 모델을 이용한 환형 가스터빈 연소기에서의 연소불안정 해석)

  • Pyo, Yeongmin;Yoon, Myunggon;Kim, Daesik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.896-904
    • /
    • 2017
  • Lean premixed combustion was successful in meeting current NOx emission regulations. However, these often leads to combustion instability. This phenomena results from the feedback relationship between heat release perturbations and acoustic pressure oscillations in the combustor. Researches on the combustion instability in an annular combustor have recently received great attention due to the enhanced NOx requirement in aero-engines. In this study, the thermoacoustic network model has been developed in order to calculate the acoustics for longitudinal as well as circumferential modes in the annular combustor. The combustion model in the network model is calculated by flame transfer function(FTF). Numerical and analytical results are compared to an measurement data.

  • PDF

Characteristics of Premixed Propane Flame in Electric Field according to Electrode Position (전극위치에 따른 전기장 내 프로판 예혼합 화염의 특성)

  • Taehun Kim;Minseok Kim;Hyemin Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.3
    • /
    • pp.134-142
    • /
    • 2023
  • Electric field assisted combustion is a method that reduces instability in lean combustion. In this study investigated the effects of electrode position on propane-air flame characteristic using a ring electrode. Results showed that burning velocity was not affected by electrode position, but positive voltage expanded the flammability limit while negative voltage contracted it. The effect of voltage polarity on the flammability limit decreased as the electrode position increased. Expanding the flammability limit with a positive voltage can reduce NOx emissions.

Swirl Flow Effects on Flame-Flame Interactions in a Model Lean-Premixed Gas Turbine Combustor (희박 예혼합 모델 가스터빈 연소기에서 스월유동 특성이 화염 간 상호작용에 미치는 영향)

  • Lee, Jiho;Park, Junhyeong;Han, Dongsik;Kim, Kyu Tea
    • Journal of the Korean Society of Combustion
    • /
    • v.23 no.1
    • /
    • pp.21-27
    • /
    • 2018
  • The effect of swirl flow structures on combustion dynamics of two interacting, lean-premixed flames was experimentally investigated, with a particular emphasis on swirl numbers and swirl rotational directions. Our results show that the amplitude of limit cycle oscillations is very sensitive to the combination of swirl numbers and rotational directions, while the instability frequency remains nearly unchanged. The counter-rotating cases show significantly lower pressure perturbations, and this behavior appears to be related to the formation of compact interacting zone with higher heat release rate, indicating the presence of increased flame surface wrinkling caused by intense turbulence.

Numerical Study on the Flow and Combustion Characteristics in Swirl-Premix Burners (스월 예혼합 버너의 유동 및 연소특성에 관한 수치적 연구)

  • Lim, Jun-Seok;Lee, Jong-Hyeok;Baek, Gwang-Min;Cho, Ju-Hyeong;Kim, Han-Seok;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.103-110
    • /
    • 2012
  • The flow field, fuel-air mixing, and behaviors of turbulent flames have been investigated using the large eddy simulation (LES) numerical technique in a premixed swirl combustor equipped with EV double cone burners. Recirculation zones are generated by the swirl burner, and lean premixed flames are formed within a distance of 0.2 m from the tip of the burner. NOx emission of 0.46 ppm is predicted at 1 atm and an air/fuel ratio of 38.7. However, most of the CO generated in a flame front continues to be oxidized as it moves toward the exit, and CO emission of 5.45 ppm is predicted at the exit. The NOx emission can be reduced by decreasing the pressure and air/fuel ratio. The characteristics of NOx emission have been investigated through RANS simulations for various fuel injection types, and it is found thereby that five-lance-hole injection produces the lowest NOx emission rate.