• Title/Summary/Keyword: 흡착 평형등온선

Search Result 39, Processing Time 0.023 seconds

Prediction of Gas Phase Sorption Isotherms on The Basis of QSAR Method (QSAR 방법을 이용한 가스 상태의 등온흡착선 예측)

  • Kim, Jong O
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.11-18
    • /
    • 1991
  • Volatile organic compounds(VOC) present in or generated by many sources, can be toxic, mutagenic or even carcinogenic, so that control of such emissions is significant. The 6 chlorinated organic chemicals as VOC were examined in this study. Prediction of the behavior of VOC on activated carbon beds is an important part of control system design. The objective of this study was to predict gas phase sorption isotherms from physical properties and liquid phase isotherms obtained with the same adsorbent and adsorbate. One of the techniques that was investigated was quantitative structure-activity relationships(QSAR) for the predicition procedures. It was possible to estimate sorption isotherms in the gas phase($a_g$) using either connectivity index, $^2{\chi}$, and the Henry's law coefficient ($H_a$) or the solubility and the equilibrium concentration in the gas phase. As a result of study, the predictive equation based on Freundlich model for $a_g$ was ${\log}\;a_g=0.238\;^2{\chi}+0.573\;{\log}\;H_a+4.330(r^2=0.94)$. Finally, this would provide a potentially useful tool to describe and predict sorption capacity without time-consuming tests.

  • PDF

A Study on Adsorption Equilibrium and Adsorption Rates for CO2 and N2 (CO2 및 N2의 흡착평형과 흡착속도에 관한 연구)

  • Lee, Hwa-Yeong;Yu, Hong-Jin
    • Clean Technology
    • /
    • v.7 no.4
    • /
    • pp.265-272
    • /
    • 2001
  • 본 연구는 지구 온난화 현상의 주원인이 되는 $CO_2$ 를 화력발전소 연도가스로부터 분리 회수하기 위한 PSA 공정 개발용 기초자료를 습득하기 위하여 실시하였다. 연도가스와 유사한 조건하에서 국내에서 제조된 활성탄을 이용하여 이산화탄소 및 밸런스를 이루고 있는 질소 가스의 흡착평형 및 흡착속도 실험을 실시하였으며, 분석을 위하여 자체 제작한 장치(부피측정법) 및 TGA 장치를 각각 사용하였다. 이 연구에서 획득한 흡착등온선으로부터 사용된 흡착제가 이산화탄소의 분리에 적절한지 판단할 수 있었다. 또한, TGA에 의해 측정된 흡착속도 자료는 향후 사용될 흡착탑의 파과곡선 예측에 사용될 수 있다. 연구결과로부터 다음과 같은 사실을 알 수 있었다. 첫째, 낮은 흡착온도 일수록 흡착량이 많고 빠른 흡착속도를 나타내었다. 둘째, 압력이 높아질수록 흡착량은 증가하였다. 셋째, SGT활성탄이 SGA-100 및 SGP-100활성탄 보다 다소 많은 흡착량과 빠른 흡착속도를 보였다.

  • PDF

Study on Isotherm, Kinetic and Thermodynamic Parameters for Adsorption of Methyl Green Using Activated Carbon (활성탄을 이용한 메틸 그린 흡착에 있어서 등온선, 동력학 및 열역학 파라미터에 대한 연구)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.190-197
    • /
    • 2019
  • The adsorption of methyl green dye using an activated carbon from an aqueous solution was investigated. Adsorption experiments were carried out as a function of the adsorbent dose, initial concentration, contact time and temperature. The Langmuir isotherm model showed a good fit to the equilibrium adsorption data. Based on the estimated Langmuir separation factor, ($R_L=0.02{\sim}0.106$), this process could be employed as the effective treatment (0 < $R_L$ < 1). It was found that the adsorption was a physical process with the adsorption energy (E) value range between 316.869 and 340.049 J/mol obtained using Dubinin-Radushkevich equation. The isothermal saturation capacity obtained from brunauer emmett teller (BET) model increased with increasing the temperature. The kinetics of adsorption followed a pseudo second order model. The free energy and enthalphy values of -5.421~-7.889 and 31.915 kJ/mol, respectively indicated that the adsorption process follows spontaneous endothermic reaction. The isosteric heat of adsorption increased with the increase of equilibrium adsorption amounts, and the total interaction of the adsorbent - adsorbate increased as the surface coverage increased.

Study on Adsorption of Pb and Cd in Water Using Carbonized Water Treatment Sludge (탄화 정수 슬러지를 이용한 수중의 납과 카드뮴 흡착에 관한 연구)

  • Kim, Younjung;Kim, Daeik;Choi, Jong-Ha;Hong, Yong Pyo;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.5
    • /
    • pp.238-243
    • /
    • 2017
  • In this study, water treatment sludge carbonized with $400^{\circ}C$ was tested as an adsorbent for the removal of Pb and Cd in water. The carbonized sludge was characterized by thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray fluorescence spectrometry (XRF), and surface area analysis. Carbonized sludge exhibited much higher specific surface area and total pore volume than water treatment sludge itself. In batch-type adsorption process, carbonized sludge represented better adsorption performance for Pb than Cd, achieving 90~98% at the concentrations conducted in the experiments. Equilibrium data of adsorption were analyzed using the Freundlich and Langmuir isotherm models. It was seen that both Freundlich and Langmuir isotherms have correlation coefficient $R^2$ value larger than 0.95. The results of studies indicated that carbonized water treatment sludge by heat treatment could be used as an efficient adsorbent for the removal of Pb and Cd from water.

Adsorption of Cd on Carbonaceous Adsorbent Developed from Automotive Waste Tire (자동차 폐타이어로부터 발달된 탄소질 흡착제에 의한 Cd의 흡착)

  • Kim, Younjung;Uh, Eun Jeong;Choi, Jong Ha;Hong, Yong Pyo;Kim, Daeik;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.6
    • /
    • pp.339-345
    • /
    • 2017
  • Carbonaceous adsorbent (CA-WTP) was prepared by heat treatment at $400^{\circ}C$ for 2 h in N2 atmosphere using waste tire powder (WTP). WTP and CA-WTP were first characterized by thermo-gravimetric analysis (TGA), energy dispersive X-ray spectrometer (EDS), scanning electron microscopy (SEM), specific surface area analysis (BET) and FT-IR spectroscopy. Then, they were tested as adsorbents for removal of Cd in water. CA-WTP exhibited much higher specific surface area and total pore volume than WTP itself and showed higher adsorption capacity for Cd. Equilibrium data of adsorption were analyzed using Freundlich and Langmuir isotherm models. It was seen that both Freundlich and Langmuir isotherms have correlation coefficient $R^2$ value larger than 0.95. The results of studies indicate that CA-WTP developed from WTP by heat treatment could be used as efficient adsorbent for the removal Cd from water.

Isotherms, Kinetics and Thermodynamic Parameters Studies of New Fuchsin Dye Adsorption on Granular Activated Carbon (입상 활성탄에 대한 New Fuchsin 염료흡착의 등온선, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.632-638
    • /
    • 2014
  • Batch adsorption studies including equilibrium, kinetics and thermodynamic parameters for the adsorption of new fuchsin dye using granular activated carbon were investigated with varying the operating variables such as initial concentration, contact time and temperature. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherms. Adsorption equilibrium was mostly well described by Langmuir Isotherm. From the estimated separation factor of Langmuir ($R_L$ = 0.023), and Freundlich (1/n = 0.198), this process could be employed as an effective treatment for the adsorption of new fuchsin dye. Also based on the adsorption energy (E = 0.002 kJ/mol) from Dubinin-Radushkevich isotherm and the adsorption heat constant (B = 1.920 J/mol) from Temkin isotherm, this adsorption is physical adsorption. From kinetic experiments, the adsorption reaction processes were confirmed following the pseudo second order model with good correlation. The intraparticle diffusion was a rate controlling step. Thermodynamic parameters including changes of free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption. The change of enthalpy (92.49 kJ/mol) and activation energy (11.79 kJ/mol) indicated the endothermic nature of adsorption processes. The change of entropy (313.7 J/mol K) showed an increasing disorder in the adsorption process. The change of free energy found that the spontaneity of process increased with increasing the adsorption temperature.

Isotherm, Kinetic, Thermodynamic and Competitive for Adsorption of Brilliant Green and Quinoline Yellow Dyes by Activated Carbon (활성탄에 의한 Brilliant Green과 Quinoline Yellow 염료의 흡착에 대한 등온선, 동력학, 열역학 및 경쟁흡착)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.565-573
    • /
    • 2021
  • Isotherms, kinetics and thermodynamic properties for adsorption of Brilliant Green(BG), Quinoline Yellow(QY) dyes by activated carbon were carried out using variables such as dose of adsorbent, pH, initial concentration, contact time, temperature and competitive. BG showed the highest adsorption rate of 92.4% at pH 11, and QY was adsorbed at 90.9% at pH 3. BG was in good agreement with the Freundlich isothermal model, and QY was well matched with Langmuir model. The separation coefficients of isotherm model indicated that these dyes could be effectively treated by activated carbon. Estimated adsorption energy by Temkin isotherm model indicated that the adsorption of BG and QY by activated carbon is a physical adsorption. The kinetic experimental results showed that the pseudo second order model had a better fit than the pseudo first order model with a smaller in the equilibrium adsorption amount. It was confirmed that surface diffusion was a rate controlling step by the intraparticle diffusion model. The activation energy and enthalpy change of the adsorption process indicated that the adsorption process was a relatively easy endothermic reaction. The entropy change indicated that the disorder of the adsorption system increased as the adsorption of BG and QY dyes to activated carbon proceeded. Gibbs free energy was found that the adsorption reaction became more spontaneous with increasing temperature. As a result of competitive adsorption of the mixed solution, it was found that QY was disturbed by BG and the adsorption reduced.

Adsorption Calculation of Oxygen, Nitrogen and Argon in Carbon-Based Adsorbent with Randomly Etched Graphite Pores (무작위 에칭 흑연 기공을 가지는 탄소기반 흡착제에 의한 산소, 질소 및 아르곤의 흡착 계산)

  • Seo, Yang Gon
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.348-356
    • /
    • 2018
  • The adsorption equilibria of oxygen, nitrogen and argon on carbonaceous adsorbent with slit-shaped and randomly etched graphite (REG) pores were calculated by molecular simulation method. Reliable models of adsorbents and adsorbates for adsorption equilibria are important for the correct design of industrial adsorptive separation processes. At the smallest physical pore of $5.6{\AA}$, only oxygen molecules were accommodated at the center of the slit-shaped pore, and from $5.9{\AA}$ nitrogen and argon molecules could be accommodated in the pores. Slit pores showed higher adsorption capacity compared with REG pores with same averaged reenterance pore size due to dead volume and inaccessible volume in defected pores. And it was shown the adsorption capacities of oxygen and argon was same in larger pore size. From calculated adsorption isotherms at 298 K it showed that the adsorption capacity ratio of oxygen to nitrogen is increased as pressure is increased.

Pure and Binary Mixture Gases Adsorption Equilibria of Hydrogen/Methane/Ethylene on Activated Carbon (활성탄에서의 H2/CH4/C2H4 순수 기체와 이성분 혼합기체의 흡착평형)

  • Jeong, Byung-Man;Kang, Seok-Hyun;Choi, Hyun-Woo;Lee, Chang-Ha;Lee, Byung-Kwon;Choi, Dae-Ki
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.371-379
    • /
    • 2005
  • Adsorption equilibria of the gases $H_2$, $CH_4$, and $C_2H_4$ and their binary mixtures on activated carbon (Calgon co.) have been measured by static volumetric method in the pressure range of 0 to 18 atm at temperatures of 293.15, 303.15, and 313.15 K. From the parameters obtained from single component adsorption isotherm, multi-component adsorption equilibria could be predicted and compared with experimental data. The binary experimental data were applied to four models : extended Langmuir, extended Langmuir-Freundlich, Ideal Adsorbed Solution theory (IAST), and Vacancy Solution Model (VSM). The models were found to describe the experimental data with a reasonable accuracy. Extended L-F model predicts equilibria of mixture better than any other model.

Characteristics of Isotherm, Kinetic and Thermodynamic Parameters for the Adsorption of Acid Red 66 by Activated Carbon (활성탄에 의한 Acid Red 66의 흡착에 대한 등온선, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.30-38
    • /
    • 2020
  • The kinetic and thermodynamic parameters of Acid Red 66, adsorbed by granular activated carbon, were investigated on areas of initial concentration, contact time, and temperature. The adsorption equilibrium data were applied to Langmuir, Freundlich, Temkin, Redlich-Peterson, and Temkin isotherms. The agreement was found to be the highest in the Freundlich model. From the determined Freundlich separation factor (1/n = 0.125 ~ 0.232), the adsorption of Acid Red 66 by granular activated carbon could be employed as an effective treatment method. Temkin's constant related to adsorption heat (BT = 2.147 ~ 2.562 J mol-1) showed that this process was physical adsorption. From kinetic experiments, the adsorption process followed the pseudo-second order model with good agreement. The results of the intraparticle diffusion equation showed that the inclination of the second straight line representing the intraparticle diffusion was smaller than that of the first straight line representing the boundary layer diffusion. Therefore, it was confirmed that intraparticle diffusion was the rate-controlling step. From thermodynamic experiments, the activation energy was determined as 35.23 kJ mol-1, indicating that the adsorption of Acid Red 66 was physical adsorption. The negative Gibbs free energy change (ΔG = -0.548 ~ -7.802 kJ mol-1) and the positive enthalpy change (ΔH = +109.112 kJ mol-1) indicated the spontaneous and endothermic nature of the adsorption process, respectively. The isosteric heat of adsorption increased with the increase of surface loading, indicating lateral interactions between the adsorbed dye molecules.